ForceSticker: Wireless, Batteryless, Thin & Flexible Force Sensors

Abstract

Any two objects in contact with each other exert a force that could be simply due to gravity or mechanical contact, such as any ubiquitous object exerting weight on a platform or the contact between two bones at our knee joints. The most ideal way of capturing these contact forces is to have a flexible force sensor which can conform well to the contact surface. Further, the sensor should be thin enough to not affect the contact physics between the two objects. In this paper, we showcase the design of such thin, flexible sticker-like force sensors dubbed as ‘ForceStickers’, ushering into a new era of miniaturized force sensors. ForceSticker achieves this miniaturization by creating new class of capacitive force sensors which avoid both batteries, as well as wires. The wireless and batteryless readout is enabled via hybrid analog-digital backscatter, by piggybacking analog sensor data onto a digitally identified RFID link. Hence, ForceSticker finds natural applications in space and battery-constraint in-vivo usecases, like force-sensor backed orthopaedic implants, surgical robots. Further, ForceSticker finds applications in ubiquiti-constraint scenarios. For example, these force-stickers enable cheap, digitally readable barcodes that can provide weight information, with possible usecases in warehouse integrity checks. To meet these varied application scenarios, we showcase the general framework behind design of ForceSticker. With ForceSticker framework, we design 4mm*2mm sensor prototypes, with two different polymer layers of ecoflex and neoprene rubber, having force ranges of 0-6N and 0-40N respectively, with readout errors of 0.25, 1.6 N error each (<5% of max. force). Further, we stress test ForceSticker by >10,000 force applications without significant error degradation. We also showcase two case-studies onto the possible applications of ForceSticker, sensing forces from a toy knee-joint model and integrity checks of warehouse packaging.

Publication
In Proc. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Cédric Girerd
Cédric Girerd
CNRS Researcher

My research interests include continuum, soft and inflatable robots for medical application and inspection tasks.