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A Generalized Framework for Concentric Tube

Robot Design Using Gradient-Based Optimization
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Abstract—Concentric tube robots (CTRs) show particular
promise for minimally invasive surgery due to their inherent com-
pliance and ability to navigate in constrained environments. Due
to variations in anatomy among patients and variations in task
requirements among procedures, it is necessary to customize the
design of these robots on a patient- or population-specific basis.
However, the complex kinematics and large design space make
the design problem challenging. In this article, we propose a com-
putational framework that can efficiently optimize a robot design
and a motion plan to enable safe navigation through the patient’s
anatomy. The current framework is the first fully gradient-based
method for CTR design optimization and motion planning, en-
abling an efficient and scalable solution for simultaneously opti-
mizing continuous variables, even across multiple anatomies. The
framework is demonstrated using two clinical examples, laryn-
goscopy and heart biopsy, where the optimization problems are
solved for a single patient and across multiple patients, respectively.

Index Terms—Concentric tube robots (CTRs), medical robots
and systems, optimization and optimal control, steerable catheters
and needles, surgical robotics.

NOMENCLATURE

A. Optimization Variables

1) Tube Design Variables:

IDi Inner diameter of tube i.
ODi Outer diameter of tube i.
Lsi Length of straight section of tube i.
Lci Length of curved section of tube i.
κi Curvature of curved section of tube.

2) Configuration Variables:

φi Tip angle of tube i.
βi Transmission length of tube i.
B Robot base frame.
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3) Path Variables:

cp B-spline control points.

B. Optimization Variables

1) Dependent Parameters:

αi Base angle of tube i.
Ki Stiffness tensor of tube i.
kit Torsional stiffness of tube i.
kib Bending stiffness of tube i.
ψi Angle between tube imaterial frame andRB.

u∗
i Precurvature vector of tube i.

εix Bending strain of tube i.
γixy

Shear strain of tube i.
pp B-spline path points.

ptip Tip position of the CTR in 3-D space.

tr Tangent vector of the CTR tip.

2) Independent Parameters:

n Number of tubes in the CTR.

s Linear abscissa along the CTR backbone.

RB Rotation matrix of the bishop frame.

εimax Material strain limit of tube i.
Ei Young’s modulus of tube i.
Gi Shear modulus of tube i.
m Number of links in the discretized CTR.

h Number of patients.

b Number of waypoints.

v Number of 3-D points in the anatomy.

c Number of B-spline control points.

a Number of B-spline path points.

S B-spline curve.

ρ Penalty term.

λ Lagrange multiplier.

Rreach Reachable percentage.

tw Tangent vector of septum wall.

pdes Desired position of the CTR tip in 3-D space.

e3 Unit vector in z-direction.

Nr Reachable 3-D points in the workspace.

I. INTRODUCTION

C
ONTINUUM robots offer a number of potential advan-

tages for a minimally invasive surgery (MIS). In contrast

to conventional rigid-linked robots, continuum robots have an

infinite number of degrees of freedom, enabling navigation along

highly curved paths [1], [2]. This ability, combined with their

small size, can lead to increased accessibility to hard-to-reach
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Fig. 1. Proposed gradient-based computational framework is capable of both
patient- and population-specific CTR design optimization. The framework si-
multaneously optimizes a motion sequence that safely guides the CTR along
a collision-free path to reach the surgical target. An example application,
myocardial biopsy, is illustrated here.

places deep inside the body [3]. In addition, their natural com-

pliance can result in increased patient safety and a decreased

risk of significant tissue damage during interaction with the

anatomy [4].

One type of continuum robot, known as a concentric tube

robot (CTR) or active cannula, consists of a set of superelastic

precurved tubes that are assembled concentrically [5], [6]. The

compliance of the robot depends on the materials and diam-

eters of the tubes. The relative translation and rotation of the

tubes enable them to bend and twist, and the robot’s overall

shape can be determined based on the bending and torsional

interactions between precurved tubes. In general, CTRs tend to

fall into two categories: 1) steerable needles; and 2) teleoperated

robotic manipulators [7]. The complex snake-like motion, along

with their small size, has enabled their use in many medical

applications, including neurosurgery [8], lung biopsy [9], brain

tumor surgery [10], and endonasal skull base surgery [11], [12].

It is not guaranteed that a given CTR design can adopt all

the desired shapes in 3-D space, due to limitations of its tube

geometries and material properties [10]. A single generic robot

will likely not be sufficient for all procedures or patients, and

a common approach is to instead design a patient- [13] or

population-specific [14] robot, as shown in Fig. 1. The design

problem for CTRs is especially challenging due to the complex

kinematics that requires solving 3-D beam bending and twisting

problems with boundary conditions [13]. It is therefore not

straightforward to design a robot based on intuition, and the

large design space makes it nearly impossible to manually select

a robot design for a particular scenario.

A. CTR Design Optimization Methods

Several approaches have been developed to try to solve this de-

sign optimization problem [15]. Many optimization algorithms

use a torsionally-rigid model to optimize the tube length and

curvature, while avoiding obstacles in the environment [11],

[16]. Other approaches have taken the torsional interactions

of the tubes into account and optimized the tube designs in

order to reach a set of waypoints [13]. In order to reduce

the complexity and improve the computational efficiency, the

design space is often reduced and only the tube lengths and

curvatures are considered as design parameters [8], [13], [17],

[18]. The inner and outer tube diameters, which affect the robot’s

size and bending stiffness, are often not included as design

parameters, despite their importance in determining the equi-

librium shape of the robot. To date, the only work that considers

the tube diameters is a gradient-free optimization framework,

which can require long computation times [19]. Planning the

motion of the robot is also important in order to safely navigate

through the environment. However, the CTR motion planning

involves solving the inverse kinematics problem multiple times

for each deployment step, which is computationally expensive.

Several algorithms have been proposed for efficiently obtaining

a collision-free motion plan [20]–[22]. In addition, approaches

that combine both the CTR design and the motion planning

have also been investigated. One such method has been to use

an optimization-based approach to plan a collision-free path

using a torsionally-rigid model [23], [24]. A more widely used

approach is the application of rapidly-exploring random tree

(RRT) sampling-based motion-planning methods to search for a

safe motion plan using either a predefined robot design [25], or

in combination with a design optimization algorithm [9], [26].

This method uses a stochastic optimization algorithm to search

in the robot design space, while using a sampling-based motion

planner to explore the configuration space. A recent approach

has extended this article, to guarantee the optimality of the

solutions and to avoid getting stuck in local minima [27]. These

previous works represent an important step towards combining

the CTR design and the motion planning into a single framework.

B. Gradient-Based Versus Gradient-Free Optimization

Simultaneously optimizing the tube design and joint variables

of a CTR for multiple patient anatomies yield an optimization

problem with at least 100 optimization variables (see Table II).

This large set of variables includes the inner diameter, outer

diameter, length, curvature, rotation, and translation for each

tube, with the latter two repeated for each configuration from the

starting point to the target for each anatomy. Each objective and

constraint evaluation has a nontrivial computation time (on the

order of seconds), as this involves running a full CTR kinematic

model for multiple configurations. Thus, it is critical to be able

to solve the optimization problem with a minimal number of

model evaluations.
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Fig. 2. Optimization algorithm scaling with the number of optimization vari-
ables, computed using the multidimensional Rosenbrock problem (shown in
dashed lines), as well as using the proposed path and CTR optimization problems
(shown in solid lines). For all cases, the gradient-free optimizers (ALPSO
and NSGA2) scale quadratically or worse, while the gradient-based optimizers
(SNOPT and SLSQP) scale linearly with finite-difference (FD) derivatives, and
better than linearly with analytic derivatives [28].

Fig. 2 shows that how the computation times for gradient-

based and gradient-free optimizations scale with the number

of optimization variables. In particular, we show results of

a benchmarking study, computed using the multidimensional

Rosenbrock problem (shown as dashed lines). The gradient-free

optimizers scale quadratically or worse, and with 100 opti-

mization variables, the gap in the computation time is several

orders of magnitude [28]. Similar studies have been performed

by other authors with comparable conclusions [29], [30]. We

also compare a gradient-based and gradient-free approach to

solving our proposed optimization problem in this work (shown

as solid lines). Specifically, we illustrate results from solving

the path optimization portion of the framework (described in

Section IV-A), as well as from solving the simultaneous op-

timization (described in Section IV-C) for the laryngoscopy

clinical example in Section V-A. The computation time for the

path and CTR design optimization problems shows the same

trend as the benchmarking studies. The gradient-free optimizer,

augmented Lagrangian particle swarm optimizer (ALPSO) (a

popular particle swarm optimizer used in previous CTR design

optimizations), has a slope of 2.6, which is quadratic, and the

gradient-based optimizer, sparse nonlinear optimizer (SNOPT),

has a slope of 1.3, which is close to linear.

Gradient-free optimizers have many advantages, e.g., insen-

sitivity to initial guess, simplicity of application, and higher

likelihood of finding global minima. However, gradient-based

optimization is more appropriate for the current approach, which

is meant to handle problems with over 100 optimization vari-

ables. It should be noted that in order to enable gradient-based

methods, the continuity of the optimization problem must be

ensured. Although the majority of objective functions currently

considered for the CTR design optimization are discontinuous

and nondifferentiable, and the proposed framework may help to

solve similar problems if the objective functions and constraints

can be reformulated into differentiable functions.

C. Contributions

The contributions of this article are as follows:

1) We present the first fully gradient-based approach for the

CTR design optimization and the motion planning. One

main advantage of this approach is the scalability, which

yields high efficiency in solving large-scale optimization

problems. It enables the optimization of any set of contin-

uous optimization variables, as well as the optimization

across multiple anatomies to create population-specific

robots for safe medical interventions.

2) The proposed tool is modular and open-source, and

the code, along with associated documentation, is

online available at https://ucsdmorimotolab.github.io/

CTRoptimization/. The availability of such a tool can en-

able other researchers to design CTRs for their particular

application, as well as to compare designs and optimiza-

tion methods directly for benchmarking purposes.

3) We present and integrate two new methods for solving the

challenges of the CTR design optimization problem. First,

the tube plastic deformation is considered for each robot

configuration, which ensures that the tubes remain within

the material strain limit. Second, compared to current

approaches in the literature, we present a more efficient

approach to computing the reachability of a CTR, by

simultaneously solving a number of inverse kinematics

problems.

It should be noted that these methods are general and can be

added on top of other optimization frameworks, with the added

cost of increased computation time for gradient-free approaches.

The rest of this article is organized as follows. The formu-

lation and definition of the design problem are presented in

Section II. In Section III, we describe an overview of the CTR

design optimization framework, which is based on OpenMDAO

(a software framework for optimization developed by NASA),

along with the modules for optimization of a tube set for a single

patient, or across multiple patients, simultaneously. Section IV

demonstrates the three major steps of our design method. Sec-

tion V showcases two clinical examples: 1) myocardial biopsy;

and 2) larynx surgery, with results obtained using the proposed

approach. Finally, Section VI concludes this article.

II. DESIGN PROBLEM FORMULATION

CTRs consist ofn precurved superelastic tubes that are nested

inside one another. Each tube can be rotated and translated via the

actuators located at their bases, which change the bending and

torsional equilibrium between them. The optimization variables

can be categorized into four subsets, as shown in nomencla-

ture: 1) tube design variables; 2) configuration variables; 3)

kinematics variables; and 4) path variables. The robot’s joint

vector is defined as q = [α1, . . . , αn, β1, . . . , βn], where αi is

the base angle of the tube i, βi is the position of the tube i
with respect to s = 0, and s represents the arc length of the

robot. The deployed length of the tube i is given by Li + βi,

where Li = Lsi + Lci is the total length of the tube i. The CTR

design space can be characterized by the geometric parameters

and material properties of each tube, as shown in Fig. 3. The
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Fig. 3. (a) CTR composed of three tubes, each of them consisting of a straight
section followed by a precurved section. (b) Illustration of the resultant shape of
the CTR, along with a cross-sectional view of a segment where all three tubes
overlap.

geometric parameters include the number of tubes (n), tube

curvature (κi), length of the straight section (Lsi ), length of the

curved section (Lci), inner diameter (IDi), and outer diameter

(ODi). The material properties include the elastic modulus (Ei)

and shear modulus (Gi). The discrete variables, including tube

number and material related parameters, are not taken into

consideration as optimization variables in the current gradient-

based optimization framework. The tube design vector is given

by d = [κ1, Ls1 , Lc1 , ID1,OD1, . . . , κn, Lsn , Lcn , IDn,ODn],
where d ∈ R

5n. The robot shape can be described as a function

c(d,q, s). The robot base coordinate frame B ∈ R
6 includes

the base location and orientation and is also considered an

optimization variable.

The goal of the proposed optimization framework is to search

for an optimal designd∗, such that the robot can navigate through

the environment and reach the target without any collisions.

Therefore, there is a need to solve a motion-planning problem.

We chose to use an optimization-based approach that uses a set

of waypoints Ω ∈ R
3 to guide the robot from the entry point to

the target location, while avoiding collisions. Given a task with b
waypoints, we must then solve b inverse kinematic problems in

order to derive a motion sequence Q = [q1 · · ·qb]. As a result,

a collision-free motion plan can be found if the robot c(d,Q, s)
does not collide with the anatomy Γ, where Γ ∈ R

3v is a set of

3-D points representing the anatomy.

In conclusion, the optimization problem is to find a robot

design d∗ and a motion plan Q∗ such that the robot c(d∗,Q∗, s)

has collision-free deployment. The design space can finally be

modified and written as

D = {d ∈ R
5n,Q ∈ R

2n×b,B ∈ R
6}. (1)

III. CTR DESIGN OPTIMIZATION FRAMEWORK

This section describes the mathematical and software frame-

work that provides the building blocks for the sequence of opti-

mization problems solved in our new CTR design method (see

Section IV). We first describe OpenMDAO, the general-purpose

optimization library with which our framework is implemented.

We then discuss how the CTR kinematic model is implemented

within OpenMDAO, and last, we describe the formulation of the

constraints.

A. OpenMDAO: General-Purpose Optimization Library

OpenMDAO is a NASA-developed open-source Python li-

brary for large-scale optimization with complex models [31].

It provides an interface with which complex models (e.g., a

CTR kinematic model) can be broken down and implemented

as a set of modular components that represent smaller units of

computation, therefore simplifying efficient derivative compu-

tation. With gradient-based optimization, derivatives must be

computed accurately, since any roundoff or truncation can lead

to robustness issues in the optimization algorithm, an increase

in the number of optimization iterations (and thus computation

time), or an inability to converge to the specified termination

criterion. Efficiency in the derivative computation method is

also critical because the difference between a simple, but slow

method (e.g., an FD approximation), and an advanced, but

efficient method (e.g., the adjoint method), is a factor of n
decrease in the computation time, where n is the number of

design variables [32].

However, accurate and efficient derivative computation is

especially challenging, since the right choice of method de-

pends on the model structure. In the CTR kinematics model,

for example, the presence of matrix inversions and explicit

time-marching in the model means that the most efficient method

is a complex combination of the chain rule and the adjoint

method. The challenge of identifying and implementing the

right method for computing derivatives is resolved by the unified

derivatives equation (UDE), a matrix equation that generalizes

the methods for computing derivatives of models [32]. The chain

rule, adjoint method, and all other methods and hybrids can be

derived from this one equation, simply by making a different

choice of which variables to expose and which to consider as

hidden within black-box components. The practical benefit is

that an optimization library can solve the UDE to effectively

automate the computation of model-level total derivatives from

the partial derivatives of each component of the model [33].

OpenMDAO is an example of such an optimization library (see

Appendix for more details), and we use it for our CTR design

optimization framework.

The implementation of the CTR optimization in OpenMDAO

is shown in a design structure matrix in Fig. 4. The gray boxes

contain the variables that are passed from one component to
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Fig. 4. Design structure matrix, which represents the structure of the CTR
kinematics model, used in both the sequential and simultaneous optimization
problems, as described in Section IV. It consists of the optimization variables
(gray), groups (purple), and the optimizer (yellow).

Fig. 5. Illustration of a discretized CTR with m links. The ODE solver
integrates from the last link m to the first link, for each tube. The virtual tubes
are visualized as dotted lines, and an example of the interpolation of bending
stiffness kib of each tube is shown here. Since tube 3 ends in between two
links (at link 1.4), interpolation of the bending stiffness must be performed. The
equation is shown, where t is the percentage of the tube that exists in the link.

another. The CTR optimization consists of an optimizer, op-

timization variables, the tube twist group, and the backbone

group. We connect the CTR model with a commercial sequential

quadratic programming (SQP) algorithm called SNOPT [34].

The tube twist group involves the solution to the ordinary

differential equations (ODEs) for the tube angles, while the

backbone group then calculates the backbone position using the

tube angles computed from the tube twist group. These groups

are described in the sections that follow.

B. Tube Twist Group

CTR tubes generally have a proximal straight section and a

distal constant-curvature section, as shown in Fig. 3(a), which is

the geometry adopted in our work. Once the tubes are assembled,

as shown in Fig. 5, the CTR can be divided into a number of

links. The overall curvature of each link is determined based on

the geometric and mechanical properties of the tubes contained

in the link [35]. The forward kinematics problem solves the

resultant shape of the robot for a given set of tubes and joint

variables. In order to address the torsion and bending interaction

between the tubes in each link, an energy minimization approach

is used to derive the differential equations for obtaining the tube

angle ψi(s) along their length. Assuming no friction, no exter-

nal loading, and tubes with transverse isotropy, the differential

equations with respect to the arc length s are given by [36]

ψ̈i =
kib
kitkb

n∑

j=1

kjbκiκj sin(ψi − ψj) (2)

where i is the tube index, kib =
Ei(OD4

i−ID4

i )π
64 and kit =

Gi(OD4

i−ID4

i )π
32 are the bending and torsional stiffnesses, respec-

tively, for the tube i (withEi andGi being the Young’s and shear

modulus of the material of tube i, respectively), kb is
∑n

i=1 kib,

κi is the precurvature of the tube i, and ψi is the angle for the

tube i along its main axis. We note that derivatives are taken with

respect to the curvilinear abscissa s of the robot, if not otherwise

specified.

The presence of gauge freedom, i.e., obtaining the same robot

shape in 3-D space for a different set of design parameters,

should be noted. This phenomenon is visible in the set of (2),

where scaling the tube stiffnesses leaves the system of equa-

tions unchanged. Since the bending and torsional stiffnesses are

linearly coupled (kit(1 + νi) = kib), we perform our analysis

of gauge freedom on the bending stiffnesses kib. The vector of

bending stiffnesses [k1b · · · knb] is of dimension n, while it

is defined by the set of design variables, which are the tube di-

ameters [OD1 ID1 · · · ODn IDn] of dimension 2n. Thus,

in order to provide a set of diameters such that the bending

stiffnesses are not linearly scaled, a set of n+ 1 constraints

must be added to the set of tube diameters. This can be done

by fixing some diameter values, or by constraining the tube

clearances between outer and inner diameters of neighboring

tubes to a specific value (instead of a range). While it can

be important in optimization problems to remove the gauge

freedom and ensure a unique solution exists for the robot shape

to design parameters, the SNOPT optimizer used in our work can

handle such optimization problems that lead to nonunique design

parameterizations. Thus, we chose to constrain a minimal set of

tube diameters, based on application requirements and allow the

gauge freedom to remain.

Based on the number of links, a set of differential equa-

tions that considers the boundary conditions, the continuity of

the robot, and the bending and moment equilibrium must be

solved [35], [36]. The boundary conditions at the proximal

ends of the tubes are based on the assumption that the tubes

inside the actuation unit are forced to be straight, where ψi(0) =
αi − βiψ̇i(0). Due to the assumption of no friction between

the tubes, there is no axial moment applied from one tube to

another. The distal and free ends of the tubes are not subjected

to any moments, which leads to the set of boundary conditions

ψ̇i(Li + βi) = 0 at these locations [36]. However, with this set

of boundary conditions, the solution to the kinematics may not be

unique, due to the fact that multiple robot shapes, with different

distal angles, are observed in the case of unstable robots, for

the same proximal tube angles αi. The alternative approach in

order to ensure the uniqueness of the solution for a given set of

boundary conditions is to use the distal tube angles, instead of

the proximal tube angles, as boundary conditions. The boundary

value problem (BVP) then becomes an initial value problem

(IVP), where the two boundary conditions are set at the distal
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ends of the tubes [37]. In summary, the boundary conditions are

now described as

ψi(Li + βi) = φi

ψ̇i(Li + βi) = 0
(3)

where φi is the distal angle of the tube i. Then, the joint

values αi can be easily derived using the relationship ψi(0) =
αi − βiψ̇i(0). Unlike the common approach of solving the BVP,

which is typically done using a shooting method [36], [38],

solving the IVP appears to also be more efficient, as it does

not require guessing and iterating the initial condition for the

torsion state in order to satisfy the boundary conditions. In order

to solve the kinematics, an open-source tool, Ozone, is used to

solve the ODEs. Ozone is built on top of the OpenMDAO en-

vironment, and therefore the derivatives of the ODE integration

are also required. Ozone enables computation of the derivatives

across the time-marching scheme for any multistage integrator

by differentiating the general linear methods equations [39].

The ODE solver, a second-order implicit integrator Lobatto2,

integrates along the length of the robot, from s = Li + βi to

s = 0, using m time steps with the time-marching method. The

time steps in the integration process are analogous to links in our

kinematic model. However, based on the deployed length of each

tube, the curvilinear abscissa s of the robot is different among

the tubes, leading to a discontinuity in the implementation when

solving for the tube angle ψi from the differential equations. We

must address this problem in order to vectorize the kinematic

model in OpenMDAO.

The solution shown in Fig. 5 is to create a m× n matrix,

where m represents the number of links and n is the number of

tubes. Since the innermost tube has the longest deployed length

in practice, we can consider the tube length of the inner tube

for discretization. The number of links is thus determined by

the total length of the inner tube L1. In other words, the entire

CTR will be discretized into m links, which begins at s = 0 and

ends at s = L1. However, when the inner tube is not reaching

its maximum deployed length, it means that there will be links

where no tube exists. To guarantee continuity for solving the

differential equations, we use the virtual tube concept in our

CTR model [40]. The idea is to extend all distal ends of the

tubes so that they are located at s = L1. Since the physical end

of tube i is located at s = Li, a virtual part is thus added in

the location [Li + βi, L1], i ∈ [1, n]. Zero bending stiffness and

infinite torsional stiffness are applied to the links where the tubes

do not physically exist, in order to ensure that the virtual part

does not affect the overall shape of the robot.

To implement the virtual tubes in our framework, there are

two challenges to address as follows:

1) First, for our gradient-based approach, we must ensure

continuity in the bending stiffness and the curvature of the

tubes, so that they are differentiable. The hyperbolic tan-

gent function 1− tanhx is chosen to generate a smooth

transition in the stiffness kib from the physical to virtual

section, represented as 1 and 0, respectively. For the cur-

vature matrix, tanhx is used since the proximal section

of each tube is straight, and the distal section is precurved

with curvature κi.

2) The second challenge to address is the fact that the ends

of the tubes are, in general, not aligned with the ends

of the links, as shown in Fig. 5. We propose to use

a linear interpolation method for the approximation for

both the stiffness and curvature matrices when solving the

differential equations.

In addition, we vectorize the tube twist group into a 3-D

matrix, which includes the number of links (m), number of tubes

(n), and the number of waypoints (b). The tube twist group is

capable of solving b IVPs at the same time. It should be noted that

the use of interpolation to remove the discontinuities in the tube

curvature and stiffness (i.e., where the physical tubes end and

the virtual tubes start) introduces some errors in the kinematics

models. However, the interpolation error is small compared to,

for instance, the impact of friction and tube clearance [41], and

can be further reduced by increasing the number of links.

C. Backbone Group

After solving for the tube twist angles ψi(s), the 3-D robot

shape is reconstructed in Cartesian space. The deformed curva-

ture vector of the robot from the base to the tip can be obtained

using [36]

u = K−1
n∑

i=1

Ki(Rψi
u∗
i − ψ̇ie3) (4)

whereKi is a 3× 3 stiffness tensor of the tube i,K =
∑n

i=1 Ki,

u∗
i is the precurvature vector of the tube i, and e3 is the unit

vector in z-direction, tangent to the robot backbone. Since the

inner tube is the only tube that extends from the proximal end

to the distal end, reconstructing the shape of this tube alone is

sufficient to obtain the robot shape. Two differential equations

for determining the backbone position are as follows:

Ṙ = Rû

ṗ = Re3 (5)

with the initial conditions R(0) = Rz(ψ1(0)) and p(0) =
[0 0 0]T . The same ODE integrator Lobatto2 and time-

marching approach are used to solve the differential equations.

The first differential equation allows us to obtain the backbone

orientation R ∈ SO(3). The second differential equation gives

us the robot backbone position p ∈ R
3. Since the deployed

length may not align with the link, interpolation of the robot

tip position is also performed.

D. Constraints

This section presents the primary constraints that are explic-

itly enforced in the optimization problem.

1) Kinematic and Geometric Constraints: The boundary

conditions at the distal ends of the tubes are treated as constraints

in the optimization problem. The torsion at the tip of each

tube ψ̇(Li + βi) is constrained to be zero because the tubes

have free distal ends. In addition, we constrain the minimum

wall thickness of the tubes based on the particular material and

fabrication method. The clearance between each tube must also

be constrained with a lower bound to ensure that they can be

actuated without too much friction and an upper bound to limit
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the impact of tube clearance on the physical robot shape. In

addition, the proximal end of each tube must be exposed in

order to be grabbed by their respective actuators in physical

prototypes, leading to the inequality βi − βi+1 ≤ 0. Finally, we

enforce constraints on the exposed length of the distal end of

each tube as (Li + βi) − (Li−1 + βi−1) ≥ 0.

2) Tube Plastic Deformation Constraints: For all optimized

robot configurations, it is important for the material strain to

remain in the elastic region to avoid plastic deformation [35].

When the tubes deform to reach an equilibrium configuration,

the material strain changes. Most of the existing frameworks

only consider the precurvature limit and enforce a constraint on

the maximum curvature or diameter [42]. However, ensuring

no plastic deformation during the entire surgical operation is

critical.

For planar tubes arranged in a plane, the maximum allowable

curvature can be computed using δκmax,i = ki − κeq [35]. How-

ever, tubes aligned in the same plane with opposite curvatures

represent a worst-case scenario for the strain that may not

happen during operation, and therefore such a formulation may

unnecessarily constrain the robot design. We instead examine the

tube strain for the specific joint values obtained using our opti-

mization algorithm. To do so, the tube strains are computed for

each link, along the entire tube lengths. In addition to examining

the tube strain related to bending, such as in previous approaches,

we also include the strain related to torsion of the tubes along

their lengths. This method assumes that the heat-treated tube

materials, such as nitinol, have zero strain in the precurved state

before assembly [43], [44].

To ensure that the strain limit for each robot configuration

is under the material strain limit εimax, the principal strains are

computed using [45]

εiI , εiII =
εix + εiy

2
±

√
(
εix − εiy

2

)2

+
γ2
ixy

2
(6)

where εix and εiy are the local bending strains of the tube i in

the x and y directions, respectively, and γixy is the local shear

strain of the tube i. To compute the bending strain in each link of

the tubes, we assume that each link is planar and has a constant

curvature, and compute the change in arc-length between the

tube’s natural and the equilibrium planes. To compute the arc

length along the tubes around their entire circumference, before

and after reaching the equilibrium, we use the set of [35]

χi = lκi

(
ODi

2
sin

(

θ −
π

2

)

+
1

κi

)

χeq = lκeq

(
ODi

2
sin

(

θ −
π

2
+ ξ

)

+
1

κeq

)

(7)

where l is the link length, κi is the curvature of the tube i, κeq

is the equilibrium curvature of the robot, ODi is the tube outer

diameter, ξ is the difference between the tube angle and the robot

equilibrium angle, and θ ∈ [0, 2π]. The bending strain εix is then

given by

εix =
|χi − χeq|

χi

. (8)

And, using the assumption of planar constant-curvature links,

we have εiy = 0. The shear strain γixy
can be computed using

Fig. 6. Illustration of the change in tube strain of a section of a single tube
of a CTR from its original state to the equilibrium state due to the changes in
arc-length and presence of torsion. χi and χeq, described in (7), are used to
compute the arc-length around the tube circumference for natural plane (Xi)
and equilibrium plane (Xeq), respectively.

the torsion of the tubes along their lengths. For a circular hollow

tube, the maximum shear strain occurs on the outer surface.

Therefore, the outer diameter ODi of the tube is used, and the

torsional strain is thus given by

γixy
= ψ̇i

ODi

2
. (9)

Fig. 6 shows both the bending and torsional strain as computed

by (8) and (9) for an example tube. Finally, after computing

the principal strains εiI and εiII , we apply the failure criterion

εiI , εiII ≤ εimax [46] to verify that the strain levels are below

that of the material’s limits.

IV. OPTIMIZATION-BASED CTR DESIGN METHOD

This section presents the details of the optimization frame-

work, which can be decomposed into the following three steps,

as shown in Fig. 7.

1) The first step is to solve the path-finding problem inde-

pendent of the CTR model.

2) The second step solves a series of sequential optimization

problems, each of which involves finding a configuration

that reaches a waypoint along the previously found path.

3) The third step is the simultaneous optimization of the

CTR tube design and joint variables, which considers all

waypoints simultaneously and uses the results from the

previous step to provide initial guesses.

A. Path Optimization

Path-finding problems are relevant to many robotics appli-

cations. Some of the approaches, including artificial potential

fields, road-map approaches, cell decomposition, and polyno-

mial interpolation, are used to search for a smooth, contin-

uous, and collision-free path for robot navigation [47], [48].

In this article, we propose a new formulation that relies on

a 3-D B-spline curve parametrization to optimize the desired

path in a constrained environment. B-splines are often used

for curve-fitting and shape optimization. Here, we optimize the

control points that define the B-spline curve to generate a 3-D

path inside the anatomy while passing through the starting point
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Fig. 7. Diagram illustrating the workflow of the proposed framework, which enables patient- and population-specific design optimization. For a specific medical
application, four inputs are required from the user in order to optimize a robot design, a series of joint values, and the robot base frame.

Fig. 8. Illustration of the path optimization including the following. (a) Selec-
tion of two end-points. (b) Formation of a straight line that consists of a number
of B-spline path points and control points. (c) Finding a collision-free path.

and the target point. A B-spline curve S(x) is given by a linear

combination of the basis functions Bi,k(x) and the 3-D control

points cpi as given by

S(x) =
n−1∑

i=0

cpiBi,k;t(x) (10)

where Bi,k;t are the B-spline basis functions of degree k and

knots t. Basis functions are given by

Bi,0(x) =

{
1 if ti ≤ x
0 otherwise

Bi,k(x) =
x− ti

ti+k − ti
Bi,k−1(x) +

ti+k+1 − x

ti+k+1 − ti+1
Bi+1,k−1(x).

(11)

The starting point and the final target point must first be

selected by the user, as shown in Fig. 8(a). The other user-defined

parameters are the number of path points (a) and control points

(c). All the points on the B-spline curve will be referred to as

the path points. The algorithm initializes all the control points

and path points on a straight line between the starting and target

points, as shown in Fig. 8(b).

TABLE I
BEHAVIOR OF THE FUNCTION g(x)

Then, to create a collision-free motion plan, a method to

ensure that all the B-spline’s path points remain inside the

particular patient anatomy must be implemented. The current

framework requires the user to import a 3-D model represented

by a triangular mesh, which can be obtained by segmentation

and 3-D reconstruction of magnetic resonance imaging (MRI) or

computerized tomography (CT) scans. Unlike the discontinuous

KD-tree approach that has been used in some gradient-free

frameworks [13], [37], our implementation must be formulated

as a continuous and differentiable function, in order to be inte-

grated into our gradient-based method. Our proposed algorithm

extracts the point cloud from the imported mesh and computes

the normal of each vertex in order to implement collision avoid-

ance. We propose a new formulation g(x) that can be introduced

into this path-finding problem in

f1(x) = ζ

a∑

i=1

⎛

⎝

v∑

j=1

dci,j(x)
0.125Pi,j(x)

⎞

⎠

︸ ︷︷ ︸

g(x)

+εe

a−1
∑

i=1

dp2

i (x)

(

a−1
∑

i=1

dpi(x)

)2

(12)

where a is the number of path points on the B-spline, v is the

number of points in the point cloud representing the anatomy,

and x represents the 3-D position for the path points. The

dci,j(x) function calculates the Euclidean distance between an

anatomical point and a given point. The sign function P (x) is

used to compute whether this given point is inside the anatomy or

outside. In addition, the 0.125 norm allows distant anatomical

points to be weighted less, therefore focusing on anatomical

points close to the given point. The behavior of the function

g(x) is given in Table I. When a 3-D point is inside the anatomy

and remains far away from the wall, the smallest value of the
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Fig. 9. Illustration of the sequential optimization step that aims to guide the
robot to the surgical site safely. The tube design variables are different among
the configurations since each waypoint is solved individually. Both (a) and (b)
show the CTR hitting the waypoints in order to reach the final target, as visible
in (c).

function can be found. In contrast, the function’s largest value

appears if a 3-D point is located outside and far away from the

anatomy. dpi(x) is the Euclidean distance between path points

i and i+ 1, and ζ and εe are the tuning parameters.

The penalty method is used to solve our path optimization

problem. Once the spline curve is inside the anatomy, the dis-

tances between adjacent path points are forced to be as equal as

possible to ensure a smooth path, as shown in Fig. 8(c).

B. Sequential Optimization

The path points from our path optimization step serve as

an input for the sequential optimization. The user can define

the number of waypoints b, which will be selected from the

B-spline path points in order to guide the robot to the target

site, represented by the final path point. The robot must avoid

collisions throughout the entire sequence for each waypoint. Due

to the complexity of the optimization problem, the large design

space considered, and the use of a gradient-based approach, a

good initial guess is needed to ensure convergence. As a result,

the algorithm solves a sequence of optimization problems for

each waypoint independently. Each optimized robot design and

associated joint variables are used as an initial guess to solve the

subsequent optimization problem, as shown in Fig. 9.

The objective function in this sequential optimization problem

is divided into three subfunctions: 1) f1; 2) f2; and 3) f3. To

compute f1, (12) will be used, where the function dci,j(x)
will now be computed as the Euclidean distance between the

point cloud representing the anatomy and the backbone points,

such that increasing ζ will force the robot to remain inside the

anatomy. In addition, the function dpi(x) is instead used to

equalize the deployed length of each tube in order to prevent

the robot from favoring the deployment of particular tubes over

others. For instance, the optimization algorithm might find a

CTR that only deploys the inner tube to reach certain target

points, resulting in a very long inner tube, which is not an ideal

configuration for practical use.

In addition, in order to reach the desired position in 3-D space,

an inverse kinematics problem must be solved. The approach

is to optimize the robot design and joint variables; so that the

Euclidean distance between the robot tip position and the target

position is minimized. The second subfunction f2 handles the

tip position error, and is given by

f2(x) =
ρ

2

(
||ptip − pdes||2

||p0||2

)2

+ λ
||ptip − pdes||2

||p0||2
(13)

where ptip is the robot tip position, pdes is the desired position,

and ||p0|| is a normalization term that allows it to be more

generally applicable to other optimization problems by reducing

the manual effort on parameter tuning. We implemented the

augmented Lagrangian method to handle the tip position error.

By definition, ρ is the penalty term and λ is the Lagrange

multiplier. This approach will obtain the exact solution if we

have a perfect Lagrange multiplier λ
∗. Another benefit is that

we can apply a lower value of ρ, which can give us the same

desired accuracy on the tip position and offer a better conditioned

Hessian matrix. The function f3 accounts for deviations in

position and orientation with respect to the entry point and is

given by

f3(x) = εp
||δpos||2
||δp||2

+ εr
||δrot||2
||δr||2

(14)

where δpos and δrot are the deviations in the base location

and orientation with respect to an initial user-defined frame,

respectively, εp and εr are the tuning parameters, and δp and δr
are the normalization terms. This function ensures that the robot

will remain close to the insertion point defined by the user while

allowing some freedom to adjust the base frame. As a result, the

final objective function can be written as

f(x) =
b∑

i=1

(f1(x)i + f2(x)i + f3(x)i) (15)

where b is the number of the waypoints. The augmented La-

grangian method requires solving a sequence of optimization

problems by gradually increasing the tuning parameter until the

solution is found. Thus, in order to reduce the effort of manually

tuning the parameters across different anatomies, we apply a

continuation approach to automatically find the two best tuning

parameters: 1) ζ; and 2) ρ, that allow us to reach the target while

avoiding collisions with the anatomy. The tuning parameters are

tuned outside the optimization, instead of during every iteration.

Therefore, the property of continuity of the objective function

is still preserved. The value of ζ will be increased if there is

a collision between the robot and the anatomy, and ρ will be

increased if the tip position error is larger than the tolerance.

C. Simultaneous Optimization

This section presents a new approach that enables optimiza-

tion of the robot design for single or multiple patient anatomies.

The patient-specific simultaneous optimization needs to be per-

formed first for each anatomy, in order to solve the population-

specific simultaneous optimization.
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Fig. 10. (a) Initialization of the simultaneous optimization step is done based
on the final configuration resulting from the sequential optimization step. There-
fore, the first few configurations may not have good initial guesses and may be
unable to initially reach the waypoints with that particular tube design. (b) After
the simultaneous optimization simulation step, a single robot design that can
reach all waypoints and the target, while avoiding collisions with the anatomy,
is found.

1) Patient-Specific: The simultaneous optimization problem

shares similarities with the sequential optimization problem.

The penalty method and the augmented Lagrangian method are

used, and all the constraints remain the same. The tube design

variables of the final robot configuration in the sequential opti-

mization step are used as the initial guess for this simultaneous

optimization, since we already know that it can reach the target

location. However, it is not guaranteed that the other configu-

rations during robot deployment will satisfy the constraints, as

shown in Fig. 10(a). As a result, we propose a new approach

that allows us to optimize a robot design and a sequence of joint

values simultaneously in the same optimization problem. Note

that only one tube set and base frame should be optimized, since

the same robot design will be used throughout the entire surgical

task. The difference between the robot configurations will there-

fore be the joint values. Our framework thus includes another

dimension—the number of robot configurations or waypoints

b. This allows us to simultaneously optimize the robot design

(d), base frame (B), and the motion plan (Q). Fig. 10 shows an

example before and after the simultaneous optimization process,

and the patient-specific optimization algorithm is shown in

Algorithm 1.

2) Population-Specific: After the patient-specific simultane-

ous optimization step is performed for each patient, an extra step

can be introduced in order to design a population-specific robot

design that works across multiple patients. To do so, we can take

advantage of the modular approach in OpenMDAO and consider

each patient anatomy as a group that consists of the subgroups for

the CTR kinematics, including the tube twist and the backbone

groups. Once all the groups are constructed, we can combine

them into a model to form the CTR design optimization problem

for multiple patient anatomies. The optimization procedure is

shown in Fig. 7 and is as follows:

a) We solve the patient-specific design and motion-planning

problem (using the path, sequential, and simultaneous

optimization steps) from patients 1 to h.

Algorithm 1: CTR patient-specific optimization.

Inputs:

Γ: Anatomical model

St: Surgical target

dinit: Initial robot design

Binit: Initial robot base frame

Outputs:

d∗: Robot design

Q∗: Motion plan

1: pp ← PathOpt(Γ,St)

2: for each ppi
∈ pp, j = 1, 2 . . . , k do

3: while collision = True or tip error ≥ tolerance

4: di, tip error ← SeqOpt(di−1,Γ,St,Binit)

5: collision ← CollisionDetection(di,Γ)

6: if collision = True

7: ζ ← increase ζ
8: if tip error > tolerance then

9: ρ← increase ρ
10: d∗,Q ← SimOpt(d1,...,j ,Γ,St)

11: return d∗,Q

b) We average the tube design variables among the patients,

and use these as an initial tube design for the population-

specific optimization.

c) We perform a population-specific simultaneous optimiza-

tion across multiple patient anatomies using the following

modified objective function:

f(x) =

h∑

i=1

b∑

j=1

(f1(x)i,j + f2(x)i,j + f3(x)i,j) (16)

where h is the number of patients and b is the number of

waypoints.

V. CLINICAL EXAMPLES

This section presents three use cases for the proposed opti-

mization framework that illustrate its ability to optimize a CTR

design and provide a path plan for different patients and proce-

dures. The general optimization problem statement is presented

in Table II. All optimizations were run on a standard PC with

Intel Core i7-8700, 3.20 GHz × 12 and 16 GB RAM.

A. Clinical Example 1: Laryngoscopy

Laryngoscopy is an MIS that enables a closed-up view of the

larynx, as shown in Fig. 11. Some conditions, including bloody

cough, bad breath, and difficulty swallowing, may require this

procedure to inspect the abnormal area [49]. In addition, it

can be used for vocal cord biopsy and for removing foreign

objects [50]. In general, there are two visualization approaches:

1) indirect; and 2) direct laryngoscopy. Indirect laryngoscopy

is considered to be a less invasive approach, since the surgeon

only needs to insert a mirror in order to get an image of the

larynx. However, this method has a high learning curve, is more

expensive, and obtaining a clear view may be more difficult [51].

Direct laryngoscopy, on the other hand, requires a flexible tool
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TABLE II
OPTIMIZATION PROBLEM STATEMENT

“*” is the absence of a value means that the corresponding optimization variable or constraint has no lower or upper bound.

Fig. 11. CTRs have the potential to be used as flexible larynscopes to navigate
through the mouth and into the larynx, where the surgeon can then obtain a clear
view from a camera installed at the tip.

that can go inside the throat to visualize the larynx area for

further analysis. However, the narrow and constrained passage

increases the contact between the surgical tool and the anatomy,

often leading to complications, including infection, bleeding,

and hoarseness [52].

A new flexible robotic scope, a flex robotic system

(Medrobotics, Raynham, USA), was introduced in 2015. It is

a steerable scope, ranging from 18 to 28 mm in diameter, which

can be used by the surgeon to navigate through the anatomy [53].

CTRs have the potential to be used as a steerable laryngoscope

and would provide the surgeon with a more miniaturized system.

The view angle and the shape of the robot can be controlled

in order to obtain a desired set of images, while ensuring the

absence of collisions with the anatomy. During operation, it is

important to have a complete and clean view of the vocal cord

area, making the reachability of the CTR an important goal.

Previous work aiming to maximize the percent coverage in

a particular volume or workspace W mainly used a forward

kinematics model with sampled joint values to generate robot

configurations [11], [17], [54]. The percentage of the volume

swept was then computed as the ratio of voxels containing tip

positions over the total number of voxels. Such approaches were

inefficient, as many robot configurations with tip positions far

away from the desired volume were computed. A more recent

approach used an inverse kinematics model, enabling the compu-

tation of only the robot configurations reaching desired positions

in 3-D space [55]. However, a torsionally rigid kinematic model

was used, which lacks generality for robot designs where tubes

experience torsion. Finally, there have been a few methods

proposed for incorporating a motion plan needed to reach the

desired 3-D volume to be swept [26], [27].

We present a new approach that takes advantage of the

proposed framework and can efficiently solve the k CTR in-

verse kinematics problems simultaneously. We reformulate the

reachability problem into an inverse kinematics problem with

distance minimization between the robot tip position and the

target positions inside the predefined volume. Thus, we generate

a number of points N that are inside the workspace W ∈ R
3,

which are uniformly distributed inside the predefined volume.

The reachable percentage of the optimized tube design d∗ is

given by

Rreach(d
∗) =

Nr

N
(17)

where Nr is the number of 3-D points that are considered

reachable.

In this laryngoscopy example, the user predefined parameters

are the tube number (n = 3), the number of links (m = 50), the

tube material (nitinol, where εmax ≈ 8% and E = 80 GPa [56]),
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Fig. 12. Timelapse of the optimized CTR deployed in the larynx. The CTR tubes are shown in green (tube 1), blue (tube 2), and orange (tube 3), and the optimized
B-spline path is shown in pink. (d) Predefined volume to be swept is represented by red spheres.

TABLE III
OPTIMIZED TUBE DESIGN VARIABLES

the number of waypoints (b = 10), the number of B-spline

control points (c = 25), and the number of B-spline path points

(a = 100). In addition, we select tube clearances between 0.1

and 0.16 mm for Nitinol tubes, which is standard for most CTR

prototypes. The wall thickness is set to be 0.05 mm. ID1 is

selected to be 0.66 mm, based on a camera (minnieCam-XS,

Enable, Inc.) that could be used for this application. Finally,

a set of points (N = 10) are selected and distributed inside a

predefined volume, represented by a sphere with a diameter of

12 mm. These extra points are treated as additional waypoints

that the tip needs to reach in the simultaneous optimization

step. Therefore, the total number of configurations to solve

becomes b = 20. The optimization quantity can be computed

from Table II. This overall problem includes a total of 140

optimization variables and 91 constraints.

The deployment sequence in Fig. 12 shows that the optimized

CTR can safely navigate through the anatomy by following the

B-spline curve path (represented in pink) from the mouth to the

vocal cords. Fig. 12(d) also shows the ten robot configurations

that can reach the predefined points inside the volume. The

reachable percentage Rreach is calculated using (17) to be 60%

based on a tip position tolerance of 2 mm.

The optimized tube design parameters are given in Table III.

Fig. 13 shows the optimized joint values that form a safe motion

plan during deployment. Since the joint values of the robot

configurations from waypoints 11 to 20 are optimized in order

Fig. 13. Optimized joint values in the laryngoscopy example, starting from
the first waypoint and ending at the target point. (a) It shows the tube base angles
of each tube during deployment. (b) It shows their translations.

to reach target points in a predefined volume, which is relatively

small, and the translation β1 has only small variations between

configurations.

In addition, we confirmed the accuracy of our kinematics

model implementation that requires an interpolation, as pre-

viously explained. For the optimized tube set with 50 links,

the average tip position error compared to the exact kinematics

model is less than 3 mm, corresponding to 0.2–1% of the arc
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Fig. 14. Illustration of the relevant anatomy for myocardial biopsy procedures.
The CTR would be inserted from the right jugular close to the neck, and it would
navigate through the right atrium in order to take the tissue sample from the
septum inside the right ventricle.

length. The computation time for the laryngoscopy example is

6 h and 35 min.

B. Clinical Example 2: Myocardial Biopsy

Myocardial biopsy, also known as heart biopsy and cardiac

biopsy, is a minimally invasive procedure that removes a small

sample of heart tissue located in the right ventricular septum. The

use of this diagnostic technique is primarily for the detection

of heart disease and the monitoring of cardiac transplantation

rejections [57]. Typically, a miniature catheter, ranging from 1.5

to 4 mm in diameter, is manually deployed into the heart via the

right jugular vein [58]. To visualize the catheter, most procedures

are performed using fluoroscopy, which can result in substantial

radiation and large sampling errors. Alternatives include the use

of cardiovascular magnetic resonance and echocardiography.

However, the challenges in visualization of the soft tissue and the

catheter tip directionality [59] result in uncertainties that can lead

to an increased risk for the patient’s safety. The complications

in the biopsy procedure include carotid puncture, bleeding, and

arterial damage.

The use of advanced surgical tools can help to reduce patient

discomfort, tissue damage, and risks of complications [60].

CTRs, in particular, have the potential to be used for heart

biopsies due to their flexibility and steerability. The complex

and constrained environment requires a specific robot design

that can navigate along a collision-free path from the jugular,

through the atrium and ventricle, in order to reach the septum,

as shown in Fig. 14. In addition, one task-specific constraint is

the orientation of the robot tip, since it can reduce the user’s effort

and patient’s risk when taking the sample tissue [61]. Thus, based

on the suggestion from clinicians at the University of California,

San Diego, the desired angle between the tip and the septum is

set to 90◦. The tip orientation constraints can be written as

tw × tr = 0 (18)

where tw is the tangent vector of the septum wall where the

target is located and tr is the tangent vector of the robot tip.

In this myocardial biopsy example, the user predefined param-

eters are the tube number (n = 3), the number of links (m = 50),

TABLE IV
OPTIMIZED TUBE DESIGN VARIABLES

the tube material (nitinol, which has a strain limit, εmax ≈ 8%

and E = 80 GPa [56]), the number of waypoints (b = 10), the

number of B-spline control points (c = 25), and the number of

B-spline path points (a = 100). ID1 is chosen to be 0.6 mm due

to the size of the biopsy forceps. The wall thickness and the

tube clearance are remain the same as previous example. The

optimization quantity can be computed from Table II. This over-

all problem includes a total of 80 optimization variables and 52

constraints. The final result is shown in Fig. 15. The deployment

sequence of the optimized CTR from the initial configuration to

the final configuration is shown in Fig. 15(a)–(d). As seen in

Fig. 15(d), the CTR can reach the final surgical target, with a tip

position error of 2 mm and at an angle of 84◦ between the robot

tip and the septum wall.

The optimized robot design d∗ is given in Table IV. Tubes 1

and 2 have higher optimized curvatures (κ1 andκ2, respectively)

compared to tube 3, whose curvature (κ3) is close to the lower

bound (κ = 0). The joint values of each tube are shown in

Fig. 16. It can be seen that the tubes have significant changes in

rotation towards the end of the deployment. In addition, tube 1 is

the only tube with significant translation during the deployment.

The average interpolation error with the optimized tube sets is

0.2–1.2% of the arc length with 50 links. The computation time

of the entire optimization, including the path, sequential, and

patient-specific simultaneous optimization, is 7 h and 33 min.

C. Clinical Example 3: Design Across Multiple Anatomies

The previous two examples demonstrated that the framework

can successfully optimize a robot design for a specific patient

anatomy. In some scenarios, it could be beneficial to have a

population-specific robot, or one that would work across mul-

tiple patient anatomies. Having a single robot design could be

feasible if the surgical task is the same and the population is

sufficiently similar, at least with regards to the anatomy in the

area of interest.

For this example, we selected three sets of CT images, which

we reconstructed into 3-D meshes. The user-defined parameters

remained the same, with m = 50, n = 3, and b = 10. The only

new parameter is the number of patients, i.e., h = 3. Therefore,

this optimization problem has a total number of 212 optimization

variables and 146 constraints for the population-specific simul-

taneous optimization. The results are shown in Fig. 17, where the

left-hand side column shows the three robot designs, including

three tube sets and cross-sectional view of the robots, resulting

from the patient-specific simultaneous optimization step. The

right-hand side column in Fig. 17 shows the final robot design
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Fig. 15. Illustration of the obtained deployment sequence for the biopsy procedure. The design parameters and joint values of the three-tube CTR are optimized
in order to safely navigate through the jugular vein and right atrium to reach the right ventricle. (d) It shows the final configuration that reaches the surgical target.

Fig. 16. Optimized joint values from the first waypoint to the target point of
the myocardial biopsy example are shown here. (a) It shows the rotation of the
each tube. (b) It shows the translation of each tube.

visualized in three patient anatomies with two viewing angles.

This example demonstrates the ability of our proposed approach

to handle the variations between three anatomical models and

find a robot design that can reach the target with an average of

3.2 mm of tip position error. Also, the angle between the robot

tip and the septum wall was 93◦ on average, which satisfies the

requirements. The optimized tube design variables for the three

anatomies are given in Table V.

Fig. 17. Result of the population-specific (h = 3) design optimization is
illustrated. Three patient’s heart model was selected in this example. The patient-
specific simultaneous optimization was performed individually, as shown on the
left-hand side. The final population-specific robot design showing the robot can
safely deploy through three different anatomies.

It should be noted that although customized nitinol tubes

might be expensive, the cost is generally a secondary concern

to functionality and safety in medical procedures. Moreover,

3-D printed tubes and other low-cost materials could instead be

used as an alternative solution [62]. As shown in Fig. 18, the

optimized joint variable β for each patient is almost identical
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TABLE V
OPTIMIZED TUBE DESIGN VARIABLES

Fig. 18. Optimized joint values from the first waypoint to the target point of
the three patient anatomies are shown here. (a) It shows the rotation of each tube
for each anatomy. (b) It shows the translation of each tube for each anatomy.

throughout deployment. The only noticeable difference among

the three patients is the value of α towards the end of the

deployment sequence. In particular, differences in the rotation

of tube 1 can be seen in the side view of the three anatomies

in Fig. 17. Qualitatively, the geometry of patient 3 is noticeably

different from the other two, including the more tortuous nature

of the jugular vein. Although the target can still be reached for

all patients, future work should include methods for grouping

patients into populations based on anatomical similarities.

VI. CONCLUSION

We presented a gradient-based optimization approach, which

is based on the modular and unified derivative framework,

OpenMDAO. The gradient-based approach allows us to effi-

ciently solve large-scale optimization problems without adding

assumptions or reducing the design space. We introduced a new

method consisting of three major steps, which can solve the

CTR patient- and population-specific design optimizations and

motion plannings, simultaneously. The new formulation of the

anatomical and plastic deformation constraints are integrated

into the optimization problem. In addition, due to the modular

approach, the framework is highly general, and offers an efficient

way to formulate new optimization problems by customizing

task-specific constraints, objectives, and patient numbers. Fur-

thermore, the proposed framework can be applied to different

patients and surgical tasks and requires a very low number of

inputs from the user.

As part of our future work, we plan to integrate CTR sta-

bility, as well as models that consider the external loading,

tube clearance, and friction. Taking these effects into account

can help guarantee safety during deployment in a real-world

setting. There is also a need to investigate a new formulation

for the collision avoidance with the anatomy that does not rely

on computing the entire point cloud, which is computationally

expensive. In addition, the computation time can be reduced by

parallelizing the algorithm across anatomies and configurations.

APPENDIX

A. Derivative Computation in OpenMDAO

The OpenMDAO optimization library uses an object-oriented

programming paradigm to facilitate the modular implementa-

tion of complex models, in a manner that facilitates derivative

computation.

The hierarchy of classes in OpenMDAO consists of compo-

nents, groups, the model, and the problem. In OpenMDAO, the

user performs all the computations using components. The com-

ponents are organized into a hierarchy using groups. The user

specifies connections between outputs and inputs of components

to form the complete analysis, which is called the model. With

this architecture, the user can easily change the objective and

constraints, as well as intermediate computations by switching

to different components.

OpenMDAO automates the computation of total derivatives

using the UDE, and it unifies the adjoint method, chain rule, and

all other known methods for computing discrete derivatives of

models using a single matrix equation, given by [33]

∂R

∂ν

dν

dr
= I =

∂R

∂ν

T dν

dr

T

(19)

whereν is the concatenated vector of the model’s inputs, outputs,

and the states,R is a vector-valued function that acts as a residual

function for ν, r is simply the output of the R function, and I
is the identity matrix.

The significance of the UDE is that different choices of the ν

vector (at different levels of model decomposition) lead to differ-

ent methods for computing derivatives. For instance, excluding

all states and treating the model as a black-box function mapping

inputs to outputs yields the trivial result that the total derivatives

are equal to the partial derivatives. Alternatively, considering a

model in which the states are explicitly defined and have no

feedback loops yields a linear equation that, when applying

back-substitution, yields the chain rule. Yet another example

is defining ν as the inputs, outputs, and a single vector of state
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variables—block solution of the UDE with this definition of ν

yields the adjoint method.

Remark: By “solution of the UDE,” we are referring to the

solution of the multiple right-hand-side linear system, which is

defined by (19). Choosing the left- or right-hand side equality

in (19) amounts to a choice of the commonly known forward or

reverse modes of differentiation. In the forward mode, solving

the left-hand side equality for the ith column yields the deriva-

tives of all variables in ν with respect to the ith variable, while

in the reverse mode, solving the right-hand side equality for

the ith column yields the derivatives of the ith variable with

respect to all variables in ν. In this work, we use the reverse

mode, because it yields the full gradient vector for one output

(objective or constraint) at the cost of a single linear solution,

and this cost does not increase with the number of optimization

variables.

The inputs, outputs, and states mentioned previously are

defined here from the perspective of the optimization model,

rather than that of the overall framework (as shown in Fig. 7).

The model’s inputs consist of optimization variables, as well

as parameters that are fixed during optimization. The model’s

outputs consist of the objective and constraint variables of the

optimization problem, and the model’s states consist of all other

intermediate variables computed within the model in the process

of mapping the inputs to the outputs. In the sequential and

simultaneous optimization problems given in Table I, the inputs

would include all the optimization variables listed in the table for

the respective problem, the outputs would include the objective

[i.e., f(x)] and all the constraints listed in the table for the

respective problem, and the states would include all intermediate

variables in the model, e.g., tube angle ψi, rotation matrix R,

backbone position p, and tube stiffnesses kib and kit.
The residual function R, is defined differently for inputs,

outputs, and states. For an input, such as κi, that takes on a

value of 1 in a particular optimization iteration (for instance), the

residual would be defined as κi − 1, such that when the function

yields zero, κi = 1, as desired. For an output or an explicitly

defined state, such as bending strain (εix = |χi − χeq|/χi), the

residual would be defined as εix − |χi − χeq|/χi. For a state

that is implicitly defined, such as the tube precurvature (u =
K−1 ∑n

i=1 Ki(Rψi
u∗
i − ψ̇ie3)), the residual function would be

Ku−
∑n

i=1 Ki(Rψi
u∗
i − ψ̇ie3). Again, the residual is defined

in this way so that when the residual evaluates to zero, the desired

solution is obtained for the state u. In the case of the residual

definition,Ku−
∑n

i=1 Ki(Rψi
u∗
i − ψ̇ie3), the significance of

rearranging to remove the matrix inverse is that due to this

choice, solving the UDE is equivalent to the adjoint method.

Otherwise, if we kept the matrix inverse, applying the FD

method to compute the partial derivatives of u would require

n applications of the matrix inverse where n is the size of the

matrix.

In our model, we have a mix of explicitly and implicitly

defined states. Therefore, when OpenMDAO solves the UDE

to compute derivatives, this process is equivalent to applying a

mixture of the chain rule and the adjoint method, which is the

desired (most efficient) approach for our model. However, the

complexity of our model would have made manual formulation

and implementation of the chain rule, and adjoint equations

a very laborious and error-prone process, which our use of

OpenMDAO has automated.

Because of OpenMDAO’s use of the UDE, the model is

implemented as a set of small units of code—the components

described previously. The analytical partial derivative of each

output with respect to each input needs to be provided to Open-

MDAO. Since each small unit performs relatively simple compu-

tations, the partial derivatives are easy to compute. OpenMDAO

then assembles the ∂R/∂ν Jacobian matrix from these partial

derivatives of each component and solves the UDE.
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