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Abstract

Many design optimization problems include constraints to prevent intersection of the

geometric shape being optimized with other objects or with domain boundaries. When

applying gradient-based optimization to such problems, the constraint function must

provide an accurate representation of the domain boundary and be smooth, amenable

to numerical differentiation, and fast-to-evaluate for a large number of points. We

propose the use of tensor-product B-splines to construct an efficient-to-evaluate level

set function that locally approximates the signed distance function for representing

geometric non-interference constraints. Adapting ideas from the surface reconstruc-

tion methods, we formulate an energy minimization problem to compute the B-spline

control points that define the level set function given an oriented point cloud sam-

pled over a geometric shape. Unlike previous explicit non-interference constraint

formulations, our method requires an initial setup operation, but results in a more

efficient-to-evaluate and scalable representation of geometric non-interference con-

straints. This paper presents the results of accuracy and scaling studies performed on

our formulation. We demonstrate our method by solving a medical robot design opti-

mization problem with non-interference constraints. We achieve constraint evaluation

times on the order of 10−6 seconds per point on a modern desktop workstation, and

a maximum on-surface error of less than 1.0% of the minimum bounding box diag-

onal for all examples studied. Overall, our method provides an effective formulation

for non-interference constraint enforcement with high computational efficiency for

gradient-based design optimization problems whose solutions require at least hun-

dreds of evaluations of constraints and their derivatives.

B Ryan C. Dunn

rcdunn@ucsd.edu

1 Department of Mechanical and Aerospace Engineering, University of California San Diego,

La Jolla, CA 92093, USA

2 Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA

3 LIRMM, University of Montpellier, CNRS, Montpellier, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-023-09864-2&domain=pdf


R. C. Dunn et al.

List of symbols

N� Number of points in the input point cloud representing a geometric shape

Ncp Number of control points for defining tensor product B-splines

N Number of B-spline control points that lie within the domain of interest

Ne Number of points on the geometric shape used for computing error

1 Introduction

Accurate detection of physical interference between two or more bodies is crucial

in the design of many engineering systems. Non-interference constraints appear in

numerical optimization problems that manipulate an object within an environment

containing other objects such that there is no collision. Many numerical optimization

problems must enforce non-interference constraints manipulate an object within an

environment containing other objects such that there is no collision. Prior literature on

these problems describe these constraints using inconsistent terminology, e.g., anatom-

ical constraints (Bergeles et al. 2015; Lin et al. 2022), spatial integration constraints

(Brelje et al. 2020; Brelje 2021), boundary constraints (Criado Risco et al. 2023; Stan-

ley and Ning 2019), and interference checks (Fadel et al. 2015). We observe that these

terms represent the same underlying concept applied to different problem settings;

therefore, we propose a common term, geometric non-interference constraints, since

they are employed in design optimization to ensure a design where there exists no

interference between two or more geometric shapes or paths of motion.

In our study, a geometric shape is associated with the design configuration of an

engineering system at a particular instance of time. The geometric shapes of interest in

this paper are curves in two dimensions, or orientable surfaces in three dimensions. We

assume that the geometric shapes are non-self-intersecting but make no assumptions

on whether they are open or closed. A path of motion or trajectory is the set of points

that traces the motion of a point on the engineering system as the system changes

configuration over time. The paths considered in this paper are simply curves in two

or three dimensions. We use the term layout to refer to a set of geometric shapes.

Based on the definitions above, we identify three major classes of optimization

problems with geometric non-interference constraints: layout optimization, shape opti-

mization, and optimal path planning. All three classes are within the scope of problems

we address in this paper.

Layout optimization optimizes the positions of design shapes via translation subject

to geometric non-interference, with or without additional boundary constraints. For

example, the wind farm layout optimization problem (WFLOP) consists of positioning

wind turbines within a wind farm in an optimal way while ensuring that interference

between turbines and the boundary of the wind farm is avoided (Cazzaro and Pisinger

2022; Guirguis et al. 2016; Reddy 2021; Criado Risco et al. 2023). Another example

of a layout optimization problem is the packing problem. Packing problems consist in

positioning objects within a domain while minimizing the amount of space occupied

or maximizing the number of objects placed without geometric interference (Fadel

et al. 2015; Brandt 2017).
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Shape optimization seeks to optimize geometric shapes subject to geometric non-

interference, with or without additional boundary constraints. For example, shape

optimization of an aircraft fuselage optimizes the shape of a fuselage with constraints

ensuring that the passengers, crew, payload, and all the subsystems fit inside the

fuselage (Brelje et al. 2020; Brelje 2021).

Optimal path planning optimizes the trajectory of a point or a set of points subject

to geometric non-interference, with or without additional boundary constraints. The

design optimization of surgical robots is an example of a problem involving robot

motion planning—a class of problems within optimal path planning—that has attracted

recent attention (Bergeles et al. 2015; Lin et al. 2022). In the design optimization of

surgical robots, non-interference constraints are imposed such that the robot does not

collide with the anatomy of a patient during operation. Additionally, it is desirable

for the robot to maintain a safe distance from the anatomy, motivating the use of a

distance-based non-interference constraint formulation in such problems. An example

of an aerospace application is the representation of complex no-fly zone shapes in

trajectory optimization (Kim and Liem 2022; Orndorff et al. 2023).

The problems just mentioned are solved using numerical optimization algorithms.

Historically, gradient-free algorithms have been more commonly used to solve such

problems, e.g., in layout optimization (Lodi et al. 2002; Cagan et al. 2002; Fasano

2014) and in robot motion planning (Bergeles et al. 2015). A major reason behind

this was the difficulty in efficiently computing the derivatives for a complex model.

As models become more complex, that is, with more disciplines and design variables,

solutions become impracticable with gradient-free algorithms since these algorithms

scale poorly with the number of design variables. However, the recent emergence of

modeling frameworks such as OpenMDAO (Gray et al. 2019) has enabled efficient

design of large-scale and multidisciplinary systems using gradient-based optimization,

including some of the aforementioned problems with geometric non-interference con-

straints (Brelje et al. 2020; Guirguis et al. 2016; Criado Risco et al. 2023; Lin et al.

2022).

Geometric non-interference constraint functions for gradient-based optimization

require special consideration. These functions must be continuously differentiable

or smooth in order to be used with a gradient-based optimization algorithm. They

should also be efficient to compute because optimization algorithms evaluate con-

straint functions and their derivatives repeatedly over many optimization iterations.

During some iterations, the optimizer may violate an interference constraint, and use-

ful gradient information in such iterations is still required despite it being infeasible.

Consequently, any non-interference constraint function must be defined in the event

of an overlap between objects and provide necessary gradient information.

Figure 1 shows a diagram with two iterations of a design body in an optimization

problem. One of the designs shown is feasible while the other is not. The feasible design

is the one where the design body is completely inside the feasible space whereas the

infeasible design has at least one point on the design body lying outside the feasible

space. For the φ defined in Fig. 1, enforcing the optimization constraint φ(x(i)) ≥ ε for

certain representative points x(i) chosen on the surface of the design body guarantees

non-interference by ensuring that all x(i) stay within the feasible region for the final
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Fig. 1 An ideal constraint

function φ indicates geometric

interferences using signed

distances of representative

points x(i) on a body from the

boundary � defining the feasible

space �

optimized design. The constant ε can be any small positive value appropriate for a

given problem.

The formulation of the constraint function φ, and consequently its derivatives, is

inherently defined by the shape of the boundary � of the feasible space. It cannot always

be assumed that the boundary � is a fixed shape across all optimization iterations, as

many problems will consider the design body and the constraining boundary � both as

variables within an overarching design problem. For example, the simultaneous shape

and layout optimization problem in Brelje (2021) optimizes the shape of a wing while

also considering the packing of internal batteries. We acknowledge that φ is dependent

on variations in � within the context of an outer loop design problem; however, we do

not consider the sensitivity of φ to variations in � to be within the scope of this paper.

For our study, we focus on the formulation of a non-interference constraint function

φ with respect to a fixed boundary �.

Existing non-interference constraint formulations suffer from various limitations.

The formulation of quasi-phi-functions by Stoyan et al. (2015) provides an analytical

form to represent an interference for simple geometric shapes. Quasi-phi-functions

are continuous but only piecewise continuously differentiable. These functions are

also not generalized to represent any arbitrary shape. The formulation by Brelje et al.

(2020) is generalized to any triangulated 3D geometric shape, but has computational

limitations. The computational complexity of their method is O(N�), where N� is the

number of elements in the triangulation. They are able to overcome this scaling issue

by making use of graphics processing units (GPUs) but demonstrate their formulation

on a geometric shape with only 626 elements in the triangulation. In their recent

work on the WFLOP, Criado Risco et al. (2023) formulate a generic explicit method

for geometric shapes in 2D, but the method suffers from the same scaling issues as

in Brelje et al. (2020) and contains discontinuous derivatives. The formulation by

Bergeles et al. (2015) employs a distance potential function that is calculated with

the k-nearest neighbors of poinst that lie on the boundary. With the use of a k-d tree

structure, the computational complexity of the k-nearest neighbor search scales better

than linearly (O(k log(N�)), on average) but the structure is not suitable for gradient-

based optimization because the derivatives are discontinuous when the set of k-nearest

neighbors changes.
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Outside the domain of non-interference constraint formulations currently employed

in optimization, we discovered a significant body of research conducted on a remark-

ably similar problem by the computer graphics community. Surface reconstruction

in the field of computer graphics is the process of converting a set of points into a

surface for graphical representation. A common approach for surface reconstruction

is the representation of surfaces by an implicit function. Implicit surface reconstruc-

tion methods such as Poisson (Kazhdan et al. 2006), Multi-level Partition of Unity

(MPU) (Ohtake et al. 2003), and Smooth Signed Distance (SSD) (Calakli and Taubin

2011), to name a few, construct an implicit function from a point cloud to represent a

surface. We observed that some of these distance-based formulations can be applied

to overcome prior limitations in enforcing geometric non-interference constraints in

gradient-based optimization.

The objective of this work is to devise a general methodology based on an appropri-

ate surface reconstruction method to generate a smooth and fast-to-evaluate geometric

non-interference constraint function from an oriented point cloud. It is desired that

the function locally approximates the signed distance to a geometric shape and that

its evaluation time is independent of the number of points sampled over the geometric

shape N� . The function must also be an accurate implicit representation of the surface

implied by the given point cloud. The contribution of this paper is a new formulation

for representing geometric non-interference constraints in gradient-based optimiza-

tion. We investigate various properties of the proposed formulation, its efficiency

compared to existing non-interference constraint formulations, and its accuracy com-

pared to state-of-the-art surface reconstruction methods. Additionally, we demonstrate

the computational speedup of our formulation in an experiment with a path planning

and shape optimization problem.

The remainder of this paper proceeds as follows. Section 2 reviews existing

geometric non-interference constraint formulations for optimization. In this sec-

tion, we also provide a thorough survey of implicit surface reconstruction methods

in order to identify methodologies to be brought into our formulation. Section 3

presents our methodology to generate a level set function for representing geometric

non-interference constraints. Section 4 provides numerical results that quantify the

accuracy and efficiency of our formulation. We demonstrate our accuracy on common

benchmarking models from the computer graphics community and also on geometries

with aerospace applications. We finally demonstrate the application of our method

using a surgical robot design optimization problem. In Sect. 5, we summarize our

approach, its potential impact, and avenues for future work.

2 Related work

This section presents an overview of related work to the defined research problem.

We begin by reviewing prior methods for enforcing non-interference constraints in

gradient-based optimization in Sect. 2.1. We then review the problem of surface recon-

struction and its complexities in Sect. 2.2. Various methods for dividing up the domain

for the implicit function are introduced in Sect. 2.2.1. In Sect. 2.2.2, we present a lit-

erature review for methods that approximate the signed distance function.
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2.1 Previous methods for enforcing non-interference constraints in

gradient-based optimization

We identify two preexisting methods for enforcing geometric non-interference con-

straints in gradient-based optimization that are both continuous and differentiable.

Previous constraint formulations that are explicitly defined by the set of nearest neigh-

bors (e.g., work by Criado Risco et al. (2023) and Bergeles et al. (2015)) have been used

in optimization, but we note that they are non-differentiable and may incur numerical

difficulties in gradient-based optimization.

Brelje et al. (2020) implement a general mesh-based constraint formulation for

non-interference constraints between two triangulations of objects. Two nonlinear

constraints define their formulation. The first constraint is that the minimum distance

of the design shape to the geometric shape is greater than zero, and the second con-

straint is that the intersection length between the two bodies is zero—i.e., there is

no intersection. A binary check, e.g., ray tracing, must be used to reject optimization

iterations where the design shape is entirely in the infeasible region, where the pre-

vious two constraints are satisfied. As noted by Brelje et al., this formulation may

make the optimizer susceptible to getting stuck in an infeasible part of the domain for

nonconvex shapes. Additionally, the constraint function has an evaluation time com-

plexity of O(N�). They initially addressed this scaling by using parallel processing

with graphics processing units (GPUs). Further improvements, e.g., a more efficient

FORTRAN-based implementation, bounding box testing, only using the minimum

value in triangle tests, and load balancing, accelerated their derivative computation by

a factor of 500 in one example (Brelje 2021).

Lin et al. (2022) implement a modified signed distance function, making it differ-

entiable throughout. Using an oriented set of points to represent the bounds of the

feasible region, the constraint function is a distance-based weighted sum of signed

distances between the points and a set of points on the design shape. This represen-

tation is inexact and is found to compromise accuracy to achieve smoothness in the

constraint representation. Additionally, their formulation also has a time complexity

of O(N�) for evaluation, which we improve upon through the proposed method.

2.2 Surface reconstruction

Our research goal—to derive a smooth level set function from a set of oriented points—

closely aligns with the problem of surface reconstruction in computer graphics. Surface

reconstruction is done in many ways, and we refer the reader to Berger et al. (2017),

Huang et al. (2022) for a full survey on surface reconstruction methods from point

clouds. We, in particular, focus on implicit surface reconstruction, which constructs

an implicit function whose zero level set represents the smooth surface implied by the

point cloud.

Surface reconstruction begins with a representation of a geometric shape. Geometric

shape representations (e.g., point clouds, triangulations, meshes containing general

polygons) can be sampled and readily converted into an oriented point cloud and posed

as a surface reconstruction problem. When working with point clouds, there can be
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many practical difficulties, e.g., the precision of 3D scanners which will introduce

error into scans. As a result, implicit surface reconstruction methods often take into

consideration nonuniform sampling, noise, outliers, misalignment between scans, and

missing data in point clouds. Implicit surface reconstruction methods have been shown

to address these issues well, including hole-filling (Carr et al. 1997; Hong-Kai et al.

2001; Davis et al. 2002), reconstructing surfaces from noisy samples (Dinh et al. 2001;

Kazhdan et al. 2006; Pan et al. 2017), reconstructing sharp corners and edges (Dinh

et al. 2001), and reconstructing surfaces without normal vectors in the point cloud

(Hoppe et al. 1992; Pan et al. 2017).

2.2.1 Approaches for constructing implicit functions from points

Implicit surface reconstruction methods construct an implicit function from a set of

points, that is not necessarily the original point cloud defining the geometric shape.

We identify three classes of approaches for selecting these points.

One approach for selecting the points for constructing the implicit function is to

adaptively subdivide the implicit function’s domain using an octree structure. Octrees,

as used by Calakli and Taubin (2011), Zhou et al. (2010), Kazhdan et al. (2006),

Pan et al. (2017), Ohtake et al. (2003), Tang and Feng (2018), recursively subdivide

the domain into octants using various heuristics in order to form neighborhoods of

control points near the surface. Heuristics include point density (Calakli and Taubin

2011), error-controlled (Ohtake et al. 2003), and curvature-based (Tang and Feng

2018) subdivisions. The error of the surface reconstruction decays with the sampling

width between control points, which decreases exponentially with respect to the octree

depth (Kazhdan et al. 2006). Additionally, the neighborhoods of control points from

octrees can be solved for and evaluated in parallel using graphics processing units

(GPUs), which allows for fast, on-demand surface reconstruction as demonstrated in

Zhou et al. (2010).

Another approach is to construct the implicit function by directly using the point

cloud defining the geometric shape. A chosen subset of points in the point cloud and

points projected in the direction of the normal vectors are used to place the radial

basis function (RBF) centers in Carr et al. (2001). This approach results in fewer

points than octrees that are still distributed near the surface. The explicit formulation

by Hicken and Kaur (Hicken and Kaur 2022) uses all points in the point cloud to

define the implicit function and shows favorable decay in surface reconstruction error

as the number of points in the point cloud N� increases. This structure has been used

in combination with RBFs for hole-filling in Carr et al. (1997) and anisotropic basis

functions for representing sharp corners in Dinh et al. (2001).

Another approach is to construct a uniform grid of points to control the implicit

function. Unlike the aforementioned approaches, the distribution of points is decoupled

from the resolution of the point cloud. As a result, deformations to the geometric

shape can be represented without loss in accuracy near the surface as shown by Hong-

Kai et al. (2001). This makes it a popular structure in partial differential equation

(PDE) based reconstruction methods that evolve the surface during reconstruction,

such as in Tasdizen et al. (2002), Jakobsen et al. (2007). In general, more points

representing the implicit function are required to achieve the same level of accuracy
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to other approaches. As a result, implicit functions defined by a uniform grid are

more computationally expensive to solve for in both time and memory usage than

the aforementioned approaches, as experienced by Sibley and Taubin (2005), but can

be reduced by a GPU-based multigrid approach as implemented by Jakobsen et al.

(2007).

2.2.2 Approaches for signed distance function approximation

Another way to classify the implicit function generated in surface reconstruction is

as an indicator function or as a continuous function that (in some cases) provides a

measure of distance to the boundary. In these cases, we use the term, signed distance

function (SDF). SDFs are commonly used because it is often useful to know the

distance to the boundary. Often, the implicit function only locally approximates the

SDF near the boundary, as is the case with our method. We identify four approaches

for locally approximating the SDF, which are described below.

2.2.3 Explicit formulations

Explicit formulations use the point cloud data to define an explicit formula repre-

senting the implicit function. These methods formulate local linear approximations to

the SDF, then interpolate between these approximations. Criado Risco et al. (2023)

present the simplest approach which uses the nearest edge and normal vector to define

the function explicitly. The resultant constraint function is piecewise continuous but

non-differentiable at points where the nearest edge switches. Belyaev et al. (2013)

derive a special smoothing method for defining signed L p-distance functions, which

is a continuous and smooth transition between piecewise functions. Hicken and Kaur

(2022) use a modified constraint aggregation method that defines a basis function with

basis weights that exponentially decay with distance. The resultant formulation is a

smooth and differentiable approximation to the SDF, which we identify as a strong

candidate for enforcing non-interference constraints with good accuracy.

Given an oriented point cloud which is a set of ordered pairs P = {(Pi , �ni ) : i =
1, . . . , N�}, where pi is the location of the points sampled over the geometric shape,

and �ni are the unit normal vectors at pi , the explicit level set function defined by

Hicken and Kaur (2022) is

φH (x) =

∑N�

i=1 di (x)e−ρ(�i (x)−�min)

∑N�

j=1 e−ρ(� j (x)−�min)
, (1)

where di (x) is the signed distance to the hyperplane defined by the point and normal

vector pair in the point cloud (pi , �ni ), �i (x) is the Euclidean distance from x to pi ,

�min is the Euclidean distance to the nearest neighbor, and ρ is a smoothing parameter.

To improve accuracy, Hicken and Kaur suggest modifications to make the linear

approximation to a quadratic approximation by using the principal curvatures of the

surface. Unless readily provided by a smooth geometric representation, the principal

curvatures must be approximated from the point cloud, such as the approximation
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method by Tang and Feng (2018). To reduce the computational complexity, Hicken

and Kaur suggest only evaluating the k-nearest neighbors, since the basis weights

exponentially decay with distance. However, using the k-nearest neighbors will remove

the function’s differentiability as the set of k-nearest neighbors changes. As a result, the

evaluation time scales by O(N�) to be differentiable. While not originally purposed

for geometric non-interference constraints, the formulation by Hicken and Kaur is on

par in computational complexity with other currently used non-interference constraint

formulations (Lin et al. 2022; Criado Risco et al. 2023; Brelje et al. 2020). Note that

explicit formulations rely heavily on the accuracy of the point cloud data and will

be susceptible to inaccuracies when provided with point clouds containing poor data,

such as noise and outliers.

2.2.4 Interpolation formulations with radial basis functions

Another method to construct the level set function is to solve an interpolation problem

given an oriented point cloud P . Because the data points of P always lie on the

zero contour, nonzero interpolation points for the implicit function can be defined on

the interior and exterior, as originally done by Turk and O’Brien (2002). Radial basis

functions (RBFs) are then formulated to interpolate the data. To avoid overfitting, thin-

plate splines can be used to formulate the smoothest interpolator for the data, as noted

in Carr et al. (2001, 1997). Solving for the weights of an RBF involves solving a linear

system, which is often dense and very computationally expensive due to their global

support. Turk and O’Brien (2002) solve up to 3,000 RBF centers, and improvements

by Carr et al. (2001) allow up to 594,000 RBF centers to be constructed in reasonable

time (hours). On top of the significant computational expense, interpolating RBFs

have been criticized for having blobby reconstructions (Turk and O’Brien 2002; Dinh

et al. 2001) which poorly represent sharp features in the geometric shapes.

2.2.5 PDE-based formulations

Another approach is to construct the level set function as a vector field that smoothly

approximates the normal vectors �ni given by the point cloud P . The vector field is

then integrated and fit, usually by a least squares fitting, to make the zero level set fit

the point cloud. We classify the methods that solve for the vector field as a solution

to a partial differential equations (PDEs) as PDE-based methods. Poisson’s method

(Kazhdan et al. 2006) uses variational techniques to Poisson’s equation to construct

a vector field. Improvements to this method add penalization weights to better fit the

zero contour to the point cloud in Kazhdan and Hoppe (2013). Tasdizen et al. (2002)

prioritize minimal curvature and minimal error in the vector field by solving a set of

coupled second order PDEs to derive their level set function. Hong-Kai et al. (2001)

use the level set method, originally introduced by Osher and Sethian Osher and Sethian

(1988), for surface reconstruction, with the advantage of modeling deformable shapes.

In the aformentioned PDE-based methods, the setup for the implicit function reduces to

solving a PDE by time-stepping (Hong-Kai et al. 2001; Tasdizen et al. 2002) or a sparse

linear system (Kazhdan et al. 2006; Kazhdan 2005) in the case of Poisson’s equation.

Kazhdan et al. (2006) note that care should be taken when choosing a smoothing filter
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for the normal field defined by �ni , especially for nonuniformly sampled points. In the

analysis done by Calakli and Taubin (2011), they found that Poisson’s method often

over-smooths some surfaces. We also note that solutions to PDEs are more difficult to

implement than other methods in practice.

2.2.6 Energy minimization formulations

Another methodology is to solve an optimization problem that minimizes some energy

function with respect to the values of the basis function directly. The smooth signed

distance (SSD) surface reconstruction method (Calakli and Taubin 2011) minimizes an

energy function with three terms. Minimizing these three terms maximizes smoothness

and minimizes the approximation error of the zero level set and the gradient field to

the data in P , all in a least squares sense. Alternative forms, such as in Tang and

Feng (2018), Ohtake et al. (2003), propose a different energy term to this formulation,

which does a direct least squares fit to the approximate signed distance function. We

perform a more thorough discussion of the four energy terms in Sect. 3, as our method

also poses an energy minimization problem.

The energy minimization problem proposed in these papers is a well-posed uncon-

strained quadratic programming (QP) problem. The solution to these unconstrained

QP problems reduces to the solution of a linear system. Making use of hierarchi-

cal structures, such as octrees, and compactly supported basis functions, the linear

system is sparse and recursively solved at increasing depths of the structure. These

advantages allow for fast solutions on the order of minutes as reported by Calakli

and Taubin (2011), Tang and Feng (2018). It should be noted that the time and space

(memory) consumed by hierarchical approaches grows exponentially with the depth

of the octree, so many implementations limit the depth up to 11. The resultant number

of control points in Tang and Feng (2018) is on the order of 106.

2.2.7 Summary

We note that interpolation formulations with RBFs, PDE-based formulations, and

energy minimization formulations are different approaches to the same problem of

approximating the SDF. The primary differences lie within the derivation and imple-

mentation of such methods. The energy minimization formulation by Calakli and

Taubin (2011) performs a least squares fit to the data in the point cloud. Thin-plate

spline RBFs are an exact solution to an equivalent least squares energy minimization

problem, as derived by Buhmann (2003). The two-step energy minimization formula-

tion by Sibley and Taubin (2005) follows the same approach as PDE-based methods

in which a vector field is solved for and then a least squares fit is done to fit the surface.

We refer interested readers to Calakli and Taubin (2011) which discuss the similarities

and differences between their energy minimization method, SSD, and the Poisson’s

method.

We summarize the context for all the methods in Table 1, highlighting the main dif-

ferences in their formulation, basis function representation, and distribution of points

controlling the function. We note that our method is an energy minimization formu-
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Fig. 2 A 2D open funnel

partitions the neighborhood of a

point pi into a feasible region �

and an infeasible region N \�

lation, which uses the same energy terms as Calakli and Taubin (2011), but with a

different basis function and different distribution of control points.

3 Methodology

3.1 Signed distance function

The approach to our methodology is to compute a level set function φ by approximating

the signed distance function (SDF) of a geometric shape. We assume that the geometric

shape partitions its neighboring space into a feasible region and an infeasible region as

shown in Fig. 2. Our goal is to generate a level set function such that the zero contour

of the function approximates the boundary between the feasible and infeasible regions,

i.e., the geometric shape. We also require that evaluating the implicit function at any

point in the domain of interest will determine if the point is located on the boundary

or within one of the two regions, as indicated by the signed distance of the point from

the boundary. We follow the convention of denoting distances in the feasible region as

positive and those in the infeasible region as negative. The signed distance function in

the neighborhood N ⊂ R
n of a point on the geometric shape can then be defined as

d�(x) =

{

+D(x) if x ∈ �

−D(x) if x ∈ N \ �
(2)

where D : R
n → R≥0 measures the shortest distance of a point x to the boundary �.

The local feasible region � ⊂ N and the local infeasible region N \ � are separated

by the local boundary �l = � ∩ N within the neighborhood, and �l ⊂ �. Note that

n = 2 or n = 3 for geometric shapes: n = 2 implies � is a curve in two dimensions

while n = 3 implies � is an orientable surface in three dimensions. We assume that �

is always a connected set. We make no assumptions on the surface or curve being open

or closed. However, we assume that � does not contain the boundary points or curves

if the curve or surface is open to ensure the existence of a neighborhood where the

definition of d� is valid. We also note that for closed geometric shapes, the definition

of a local neighborhood is not necessary, as the feasible and infeasible regions can be

simply defined as the inside and outside of the closed boundary � (see Fig. 1), or vice

versa. This is identical to the standard definition of the signed distance function.
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3.2 B-spline functions

Our desired level set function is a smooth approximation to the signed distance function

of a geometric shape and is defined as a mapping φ : V ⊂ R
n → R, where V is the

space where we wish to evaluate the level set function as a non-interference constraint

function during optimization. This means that the zero level set S = {x : φ(x) = 0}
implicitly approximates the given geometric shape. To achieve such an approximation,

we utilize tensor product B-splines. A B-spline volume P : [0, 1]3 → R
3 is defined

as

P(u, v, w) =

ni ,n j ,nk
∑

i, j,k=0

Ci, j,kBi,d1(u)B j,d2(v)Bk,d3(w), (3)

where (u, v, w) ∈ [0, 1]3 are the normalized parametric coordinates, Bi,d1(u),

B j,d2(v), Bk,d3(w) are the B-spline basis functions of degrees d1, d2, d3 in the i, j, k

directions respectively, and Ci, j,k are the control points that form the (ni +1)× (n j +
1)× (nk +1) control net in the physical coordinate system. Equation (3) is essentially

a tensor product, and hence P is also called a tensor product B-spline.

A B-spline volume maps a volumetric space in the parametric coordinate system

(u, v, w) to the physical coordinate system (x, y, z) by translating and deforming the

volumetric space according to the control net Ci, j,k . The volumetric space we wish

to represent in the physical coordinate system is a rectangular prism V. This is the

physical space where geometric non-interference constraints need to be evaluated;

therefore, we refer toV as the domain of interest. We require thatV encompasses the

minimum bounding box for a given point cloud. The minimum bounding box is the

smallest closed box in R
n that contains the input point cloud representing a geometric

shape. We space the control points Ci, j,k across V in a uniform grid and consider

them to be constant. The domain of interest is not always a cube; therefore, parametric

coordinates may be scaled differently along different directions. To compensate for

this, some directions may contain more control points than others depending on the

dimensions of V.

The B-spline basis functions Bi,d1(u), B j,d2(v), and Bk,d3(w) are generated by the

de Boor’s recursion formula (De Boor 1972). The formulas for all three directions are

identical, and Bi,d1(u) along the i direction is computed by recursion

Bi,0(u) =

{

1 if ti ≤ u < ti+1

0 otherwise
,

Bi,k(u) =
u − ti

ti+k − ti
Bi,k−1(u) +

ti+k+1 − u

ti+k+1 − ti+1
Bi+1,k−1(u),

(4)

where ti denotes the knots in the i direction. The basis functions corresponding to Ci, j,k

provides support only for (u, v, w) ∈ [ui , ui+d1+1]× [v j , v j+d2+1]× [wk, wk+d3+1];
thus the basis functions are sparse. This also means that the number of nonzero terms

in the summation of Eq. (3) is proportional to the degrees d1, d2, and d3.
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We define the B-splines for our formulation using uniform knot vectors and a

uniform grid of control points Ci, j,k across V. This makes the mapping (u, v, w) →
(x, y, z) a linear, one-to-one relationship with (u, v, w) ∈ [0, 1]3 spanning the entire

volumetric space of V. Thus, ∂u
∂x

, ∂v
∂ y

, and ∂w
∂z

are constants that depend only on the

dimensions of the rectangular prism V. Since we are using a standard uniform knot

vector, it should be noted that the control points Ci, j,k must lie beyondV in order for

the domain of the B-spline to beV. With this setup, we define our desired function φ

as

φ(x, y, z) =

ni ,n j ,nk
∑

i, j,k=0

C
(φ)

i, j,kBi,d1(u(x))B j,d2(v(y))Bk,d3(w(z)), (5)

where u(x), v(y), and w(z) map the physical coordinates to parametric coordinates,

and C
(φ)

i, j,k are the values of the function φ at the control points. The derivatives with

respect to the spatial coordinates and derivatives with respect to the control points

are easily derived from this form. The sparsity of the basis functions over the entire

domain and the use of uniform knot vectors make the computation of φ at any given

point (x, y, z) in the domain highly efficient.

Note that for a level set function φ for a curve in two dimensions,V is a rectangle,

P reduces to a B-spline surface, and we omit terms along the k direction in Eq. (5).

In all of the remaining discussion, we assume that the geometric shape is a surface in

three dimensions.

3.3 Energies for B-spline fitting

The core of our methodology lies in computing appropriate C
(φ)

i, j,k values on the con-

trol net so that the level set function φ approximates the signed distance function with

favorable properties for gradient-based optimization. Note that since our approxima-

tion uses B-splines, the resulting function will already be smooth and fast-to-evaluate.

Therefore, the remaining task is to formulate an approach for reliably estimating C
(φ)

i, j,k

using the data from an oriented point cloud.

An oriented point cloud is a set of ordered pairs P = {(pi , �ni ) : i = 1, . . . , N�},
where pi are the physical coordinates of the points sampled over the geometric shape,

and �ni are the unit normal vectors to the surface (or curve) at pi oriented towards the

infeasible region. Our method always requires an oriented point cloud as its input.

However, we note that in cases where only a point cloud without normal information

is available, Principal Component Analysis (PCA) along with a Minimum Spanning

Tree (MST) algorithm can be used for estimating normals and their orientation (Hoppe

et al. 1992). Edge-Aware Resampling (EAR) (Huang et al. 2013) is another method

that can be used for generating noise-free normals that also preserves sharp features.

We calculate C
(φ)

i, j,k values by minimizing an energy function consisting of multiple

energies. The terms in the energy function are adopted from existing surface recon-

struction methods (Calakli and Taubin 2011; Ohtake et al. 2003; Pan et al. 2017; Tang

and Feng 2018). Since the zero contour of our desired level set function φ should
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approximate the geometric shape represented by the point cloud, it is straightforward

to see that we should minimize energies to approximately satisfy φ(pi ) = 0 and

∇φ(pi ) = −�ni . Hence we first define energies

Ep =
1

N�

N�∑

i=1

φ(pi )
2 and En =

1

N�

N�∑

i=1

‖∇φ(pi ) + �ni‖
2 , (6)

where Ep estimates the approximation error as the average of squared distances of

the point cloud from the zero contour of φ, and En measures the average of squared

alignment errors of the level set function’s gradient when compared to the negative

of the unit normal vectors in the point cloud. Note that we take the negative of the

normals (oriented toward the infeasible region) from the point cloud since we want

distances given by φ to be positive inside the feasible region. Minimizing Ep forces

the zero contour of φ to pass through all the points in the point cloud, and minimizing

En tries to orient the function’s direction of steepest increase ∇φ along the normal

to the geometric shape while pointing toward the feasible direction, both in the least

squares sense. Minimizing En is important since the derivatives of the exact signed

distance function d� on the boundary of a geometric shape is along the normal to the

boundary, and d� always satisfies the eikonal equation, i.e., ‖∇d�‖ = 1.

If we perform a direct minimization of energies Ep and En , the resulting function

attempts to accurately fit the point data on the geometric shape, and since these energies

do not control the behavior of φ away from the geometric shape, it could create

superfluous zero contours away from the point cloud as reported in previous studies

(Calakli and Taubin 2011). To overcome this issue, we define the regularization energy

Er =
1

|V |

∫

V

∥
∥
∥∇2φ(x)

∥
∥
∥

2

F
dV, (7)

where ∇2φ(x) is the Hessian matrix of φ evaluated at x, ‖·‖F represents the Frobe-

nius norm, and |V | =
∫

V
dV is the total volume of V. The regularization energy Er

is interpreted as the aggregate curvature of φ over the entire volumetric space of V.

The minimization of Er smooths the function φ since forcing the Hessian to be zero

forces the variations in the gradient field ∇φ to a minimum. Since the gradient of φ

is approximately aligned with the unit normals on the point cloud when minimizing

En , trying to maintain a constant ∇φ by minimizing Er also helps satisfy the eikonal

equation ‖∇φ‖ = 1 for points further away from the point cloud. We evaluate the inte-

gral in Er using the B-spline control points Ci, j,k lying insideV as quadrature points

with unit quadrature weights. Therefore, the regularization energy is approximated as

a discrete sum is given by

Er =
1

|V |

∫

V

∥
∥
∥∇2φ(x)

∥
∥
∥

2

F
dV ≈

1

N

N
∑

i=1

∥
∥
∥∇2φ(xi )

∥
∥
∥

2

F
, (8)

where N is total number of quadrature points, typically about the same as the number

of control points Ncp = (ni + 1) × (n j + 1) × (nk + 1).
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Some surface reconstruction techniques employ another energy term Ed , which

attempts to fit the signed distance function over the entire domainV. However, mini-

mizing this energy was found to create overfitting issues and produce high frequency

oscillations in the level set function φ in our investigation and previous studies (Tang

and Feng 2018). As a result, we neglect this energy in our formulation. Nevertheless,

we present it here for the sake of completeness. The signed distance energy is given

by

Ed =
1

N

N
∑

i=1

(φ(xi ) − d�(xi ))
2 , (9)

where signed distances d�(xi ) are evaluated at the control points within V (same

as quadrature points in Er ). The signed distances d�(xi ) can be approximated using

distances to the nearest neighbor in the point cloud and its normal (Tang and Feng

2018), or by evaluating the explicit Eq. (1). Note that minimizing Er can act as a

regularization to avoid overfitting caused by Ed but careful weighting of the four

energies according to the geometric shape is necessary.

3.4 Final energyminimization problem

Finally, we define the total energy function f as

f =
1

N�

N�∑

i=1

φ(pi )
2

︸ ︷︷ ︸

Ep

+
λn

N�

N�∑

i=1

‖∇φ(pi ) + �ni‖
2

︸ ︷︷ ︸

λnEn

+
λr

N

N
∑

i=1

‖∇2φ(xi )‖
2
F

︸ ︷︷ ︸

λr Er

, (10)

where λn and λr are the relative penalization weights for En and Er with respect to Ep.

The energy minimization problem that yields the desired level set function φ is then

given by

minimize f = Ep + λnEn + λrEr

with respect to C
(φ)

i, j,k .
(11)

Note that the function values at the control points C
(φ)

i, j,k directly affect Ep, En, and

Er through the definition of φ using B-splines (see Eq. (5)). If the geometric shape

is a curve in two dimensions, then the optimization variables are C
(φ)

i, j . The choice

of penalization weights is not obvious. Penalization weights may require tuning on

a case-by-case basis depending on the geometric shape. In general, we recommend

λn ∼ 10−2 and λr ∼ 10−4 based on the parameter study presented in Sec. 4.

We provide a summary of our methodology in Algorithm 1 for geometric shapes

that are surfaces in three dimensions. The algorithm is easily adapted for curves in

two dimensions by simply omitting terms along the k direction.
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Algorithm 1 A scalable and differentiable geometric non-interference constraint for-

mulation
1: Discretize the given geometric shape into an oriented point cloud P .

2: Define the domain V for non-interference constraint evaluation, where V is a closed box in R
3 and

contains the minimum bounding box of P .

3: Select the appropriate numbers of control points ni , n j , and nk along each direction, and define the

corresponding uniform grid of control points Ci, j,k and uniform knot vectors.

4: Select appropriate weights λn and λr , and solve the energy minimization problem (11) to obtain C
(φ)
i, j ,k

.

5: Evaluate the geometric non-interference constraint(s) during each optimization iteration using the φ

given by Eq. (5) and optimized C
(φ)
i, j ,k

from Step 4.

3.5 Implementation details

We initialize C
(φ)

i, j,k for the energy minimization problem (11) by evaluating the explicit

equation (1) at each control point Ci, j,k . This initialization gives an overall good initial

guess for the signed distance function with relatively small Ep and En values. While

the initialized B-spline function φ is always differentiable for degree two or more,

points of non-differentiability in the exact signed distance function will create regions

of high curvatures in φ. Hence, this initialization may result in a large Er term, even

for smooth geometric shapes.

The minimization of Er is thus necessary to smooth these regions of high curvatures,

although compromising the accuracy at representing the exact SDF in these regions.

Thus, λr should be large enough to enable smoothing of high curvatures that exist in

the exact signed distance initialization but small enough so that it does not induce a

large error in representing signed distances near the geometric shape. This is essential

for better convergence in the overarching optimization problem when solved using a

gradient-based algorithm.

In our implementation, we define the B-spline domainV by extending the minimum

bounding box for the point cloud along its diagonal by 15%. The choice of 15% is

purely empirical, and it can be lower or higher depending on the optimization problem

requirements. The additional margin allows optimization algorithms to evaluate the

constraint function at locations that are away from the geometric shape.

Higher order B-splines are computationally expensive. However, they improve the

local degrees of freedom and the ability to control the function. In our experiments

with the Stanford Bunny model shown in Fig. (5), we found no significant reduction

in error for B-spline degrees higher than three. Hence, we recommend cubic B-splines

for reasonable accuracy and computational efficiency.

Additionally, it is often too computationally expensive to express a non-interference

constraint for an optimization problem by representing all optimization constraints

φ(x(i)) ≥ 0 individually, especially for a large number of points on the design. Instead,

we recommend implementing a smooth minimum or maximum function such as KS-

aggregation (Kreisselmeier and Steinhauser 1979) to reduce the number of constraints

in the optimization problem.

As an additional note, we consider an extension to the current problem in which the

boundary � of the feasible space, which is discretized and represented by a point cloud

123



R. C. Dunn et al.

Fig. 3 The −1, 0, 1, and 2 contours of the initialized (left) and the energy minimized (right) level set

function φ

P , is also varying during an optimization problem. In such a case, Algorithm 1 must be

completed at every optimization iteration and the derivatives of the constraint values

{φ(x(i)), for i = 1, 2, . . . , Nd} with respect to P must be computed. For computing

these derivatives, we would apply the direct or adjoint method where the states are the

control point values C
(φ)

i, j,k computed as a solution to the energy minimization problem.

Therefore, to compute the derivatives, we have to solve M systems of linear equations

where M is the lower between the number of points representing the boundary (N�)

or the number of points representing the engineering design system (Nd ). Note that

this operation will scale at a minimum of O(M) and may be impractical to perform

at every iteration of a large optimization problem. We hope for this problem to be

addressed in a future work.

Lastly, we note that the energy minimization problem (11) is inherently an uncon-

strained quadratic programming (QP) problem, and we follow the derivation from

Calakli and Taubin (Calakli and Taubin 2011) to reduce problem 11 to the solution

of a sparse, symmetric, positive definite linear system. Using a conjugate gradient

solver, the solution to this problem is able to be completed on the order of seconds,

depending on the number of control points. We release the python package to perform

the energy minimization and evaluation of the non-interference constraint in an open-

source package (https://github.com/LSDOlab/lsdo_genie). Further numerical studies

are presented in the next section.

4 Numerical study

This section presents the results of various numerical studies using our formulation.

We begin by studying our method using simple two-dimensional geometric shapes

in Sect. 4.1. In Sect. 4.2, we investigate the dependence of our method on various

parameters using the Stanford Bunny dataset. Sect. 4.3 then compares our method to

previous non-interference constraint formulations using the Stanford Bunny, and other

surface reconstruction methods using three datasets from the Stanford 3D Scanning

Repository. We demonstrate the accuracy of our method in representing geometric

shapes for aerospace optimization applications in Sect. 4.4. We conclude the section

by demonstrating the application of our method by solving a medical robot design

optimization problem with non-interference constraints in Sect. 4.5.
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Fig. 4 The exact SDF (top) and the energy minimized LSF φ along a 1D slice (bottom) for multiple

geometric shapes

We implement the proposed method in a Python environment, and run all exper-

iments on a desktop with an 8-core Ryzen 7 @ 3.6 GHz processor and 32 GB of

RAM. We do not implement multi-threading or parallelization with GPUs in any of

our numerical experiments.

4.1 Investigations using simple geometric shapes in two dimensions

We begin by applying our formulation to curves in two dimensions. Because our

formulation is generic, no modifications are required to Eq. (10), and the terms in the

k direction are simply ignored for 2D geometric shapes.

For 2D curves, the isocontours from the level set function (LSF) φ can be readily

visualized to facilitate a better understanding of the function both near and far from

the curve. Figure 3 visualizes the isocontours of the initialized and energy minimized

LSF for a rectangle using our formulation. We initialize C
(φ)

i, j using the explicit Eq. (1).

Neglecting the sharp corners in this example, the contours of the initialized function

closely match the exact signed distance function (SDF). Thus, the explicit method

provides an excellent approximation of the SDF. We observe that the contours of the

LSF are more rounded near the corners after energy minimization. Minimizing Er

smooths sharp corners on all isocontours, however, not to a degree that compromises

En and Ep near the zero contour. We note that En and Ep have less influence compared

to Er on the isocontours corresponding to 1 and 2, hence these contours are even more

rounded.

A LSF representing multiple geometric shapes may also be obtained using a single

B-spline. Figure 4 shows the exact SDF and a one-dimensional slice of our energy min-

imized LSF φ along the x axis for a domain containing multiple circles. We note that
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Fig. 5 The Stanford Bunny

model

the non-differentiable points in the exact SDF can lie inside or outside of a geometric

shape. This example illustrates how our energy minimization formulation balances the

trade-off between minimizing the curvature of φ and maximizing the accuracy at rep-

resenting the SDF near points of non-differentiability and high curvature. Our energy

minimized LSF φ poorly approximates the SDF near points of non-differentiability

and high curvature. However, in regions without any non-differentiabilities or high

curvatures, the zero level set preserves a good approximation to the exact SDF. For

the remainder of the numerical results section, we only consider a single geometric

shape within the domain of interestV, because the error of our formulation increases

with the minimum bounding box diagonal.

4.2 Investigations using a complex geometric shape in three dimensions

We use the well known Stanford Bunny scanned dataset (shown in Fig. 5) to analyze

our formulation’s performance on three-dimensional geometric shapes. This dataset

contains a large point cloud which we consider as an exact surface. We coarsely sample

this point set and apply our method, measuring the accuracy of the resultant energy

minimized LSF. The Stanford Bunny contains small scale features, sharp corners,

flat surfaces, and smooth surfaces which will test the accuracy of our formulation

in representing different geometric features. The sampled point set is free of noise,

missing data, and nonuniformity, which are challenges not investigated in this paper.

We use the root-mean-squared (RMS) error and max error to evaluate the accuracy

of our energy minimized LSF in approximating the signed distance function. The

errors are normalized by the minimum bounding box diagonal L to ensure that they

are independent of the size of a geometric shape. This allows for a common metric for

comparing accuracies across different geometric shapes. The errors are defined as

RMS error =
1

L

√
∑Ne

i=1(φ(xi ) − d�(xi ))
2

Ne

, and (12)

max error = max
i=1,2,...,Ne

1

L
|φ(xi ) − d�(xi )|, (13)
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Fig. 6 The RMS errors for on- and off-surface points while varying λn and λr about 1. This result uses the

Stanford Bunny sampled at N� = 25, 000, and a control point grid of 31 × 31 × 26

where Ne is the number of points xi used to calculate the error, and the signed distances

are approximated using explicit Eq. (1) on the large point cloud. We define the on-

surface error by evaluating points that lie on the geometric shape where the true value

is zero. The off-surface error is computed by evaluating points that are near but do not

lie on the geometric shape. To acquire these sample points, we take the original sample

points and move them in the direction of the normal vectors by specified distances.

The energy minimization problem has two different resolution scales: the resolu-

tion of the point cloud data and the resolution of the B-spline control grid. The energy

minimized LSF’s ability to approximate the signed distance is best when both resolu-

tions are very fine. Unlike hierarchical structures or explicit methods, the control grid

resolution for our method is independent of the point cloud resolution. As a result, we

conduct an experiment to highlight the effects of varying the two resolution scales.

Table 2 tabulates the results of our nine experiments, in which on-surface error and fit-

ting times from of our experiments are shown. Fitting time is the time to solve energy

minimization problem (11). We show averaged the fitting times across N� resolu-

tions because it does not influence the fitting time given a constant number of control

points Ncp. In terms of the on-surface error, increasing both resolutions correlates to

a decrease in both RMS and maximum error. In our results, the maximum error of our

function monotonically decreases with increasing Ncp, however, does not monoton-

ically decrease with increasing N� . The source of this comes from the fact that the

optimal solution will compromise regions it can not fit in order to get a better overall

solution (a decrease in RMS error). In terms of the fitting time, increasing the number

of control points Ncp increases the time to solve the energy minimization problem.

We note that for each application of our method, a compromise between accuracy and

fitting time must be made when selecting the resolutions.

While we do not propose an exact method for selecting the penalization weights

λn and λr , we provide a fixed point parameter study on each weight. Figure 6 shows

the resulting errors from varying each penalization weight about the fixed point λn =
λr = 1 using the Stanford Bunny dataset. The study on λr shows that small values

(λr < 1) have very little effect on the RMS error, and large values (λr > 1) significantly

reduce the energy minimized function’s accuracy. The study on λn suggests that for
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Fig. 7 Isocontours of the energy minimized LSF for the Stanford Bunny. The colors represent the error of

the isocontour to the true signed distance value. The isocontours and error are normalized by the minimum

bounding box diagonal

a given geometric shape, there exists an optimum value of λn that minimizes the

energy minimized function’s error. In all studies, we observed an increase in the

minimization time as the corresponding weight increased (not visualized in the figure).

These observations lead us to recommend the use of λn ∼ 10−2 and λr ∼ 10−4 for

reasonable accuracy for this particular geometry.

The ability of our function to represent nonzero level sets of the Stanford Bunny is

visualized in Fig. 7. The level sets form good approximations of the offset surfaces,

with a maximum relative distance error of 9.8 × 10−3. In these visualizations, we

observe the region of highest error to be near the neck and feet of the model, where

sharp edges and corners exist. Most notably, the 0.005 and 0.01 level sets remove

the ears of the model, despite them being in the exact SDF representation. As a thin

feature, the removal of the ears in the 0.005 and 0.01 level sets is consistent with

similar observations by Tang and Feng (2018).

4.3 Comparison to other methods using complex geometric shapes in three

dimensions

We show the computation time and accuracy of our method compared to explicit

non-interference constraint formulations in Fig. 8, varying the sample size N� of the

Stanford Bunny. We observe that the method presented by Lin et al. (2022) and the

explicit method presented by Hicken and Kaur (2022) scale in evaluation time with

O(N�), while our method scales independently of N� . We note that formulation from

Lin et al. is not an attempt at approximating the signed distance function, thus is

neglected from the RMS error comparisons. In terms of on-surface error, the explicit

method has a steady decay in RMS error with respect to increasing N� , suggesting

a power law relationship. Our method has a similar decay up to N� = 104, where

the RMS error decays slower for larger N� > 104. Similarly, the off-surface RMS

error of the explicit method steadily decays for both the ±0.005 and ±0.01 contours,

and our method decays until N� = 104. For N� > 104, the off-surface error of

our method decays slowly. Our method’s ±0.01 contours have significantly more

error than the ±0.005 contours, while the explicit method has similar error for both

sets of isocontours. For both on-surface and off-surface error, our method performs

better in terms of accuracy up until the ±0.005 contours and N� < 2 × 104. From

this information, we conclude that the explicit method will outperform in terms of
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accuracy and underperform in terms evaluation time compared to our method for most

very finely sampled geometries. We note that our method can achieve better accuracy

than shown in Fig. 8 by a trade-off in fitting time as shown in Table 2. Additionally,

we note that the explicit method requires a noise-free, uniform sampling to achieve

the presented results, which is not always feasible.

We apply our method using two additional scanned datasets from the Stanford 3D

Scanning Repository. Table 3 records the results of the on-surface error of our method,

as well as the reported on-surface error from four notable surface reconstruction

methods for necessary context. The methods are smooth signed distance (SSD) recon-

struction (Calakli and Taubin 2011), Multi-Level Partition of Unity (MPU) (Ohtake

et al. 2003), wavelets (Manson et al. 2008), and screened Poisson (SP) (Kazhdan and

Hoppe 2013). The results for the surface reconstruction methods were obtained from

Kazhdan and Hoppe (2013), Ohtake et al. (2003), Pan et al. (2017), Tang and Feng

(2018) and were not reproduced in our investigation, resulting in missing data in the

table. Of the three scanned datasets, our energy minimized LSF maintains on-surface

RMS error and max error on the same order of magnitude compared to the four other

methods.

4.4 Application to aircraft design problems

We now apply our formulation to a number of geometric shapes involved in novel

aircraft design. Aircraft design optimization is a long standing problem and has been

the subject of recent interest in problems involving geometric non-interference con-

straints, e.g., the layout optimization of air cargo (Brandt 2017), trajectory optimization

with complex no-fly zone shapes (Kim and Liem 2022; Orndorff et al. 2023), aerody-

namic shape optimization (Brelje et al. 2020), and joint battery layout and wing shape

optimization (Brelje 2021). To enable gradient-based design optimization involving

these constraints, a new generic method is required to represent numerous compo-

nents within an aircraft’s design. We recognize the potential for our formulation and

demonstrate its capabilities by conducting an experiment.

In this experiment, we apply our formulation and quantify the resultant errors of

five geometric shapes commonly associated with aircraft design. The geometries we

model include a fuselage and a wing from a novel electric vertical take-off and landing

(eVTOL) concept vehicle (Silva et al. 2018), a human avatar (Reed et al. 2014), a

luggage case, and a rectangular prism representing a battery pack within the wing. A

visualization of these components in a feasible design configuration is illustrated in

Fig. 9.

Table 4 tabulates the on-surface error of the energy minimized LSF for each geom-

etry. We observe that the smallest relative on-surface error is of the smooth fuselage

shape, while the largest relative error is of the human avatar. We note from this example

that geometries with features well proportioned to their minimum bounding box diag-

onal are better fit using our method. For example, the small scale features (e.g. hands

and feet) of the human avatar produce large relative error, yet the smooth fuselage

with no small-scale features has very low relative error. We observe that the bounding

boxes of the fuselage, wing, and battery pack are poorly proportioned between each

123



R. C. Dunn et al.

T
a
b
le
3

R
ep

o
rt

ed
o

n
-s

u
rf

ac
e

er
ro

r
o

f
su

rf
ac

e
re

co
n

st
ru

ct
io

n
m

et
h

o
d

s
an

d
o

u
r

m
et

h
o

d
fo

r
th

re
e

b
en

ch
m

ar
k

in
g

d
at

as
et

s.
W

e
re

co
n

st
ru

ct
u

si
n

g
N

c
p

=
2

5
,
0

0
0

,
λ

n
=

1
0
−

2
,

an
d

λ
r

=
5

×
1

0
−

4

M
o
d
el

S
S

D
(C

al
ak

li
an

d
T

au
b
in

2
0

1
1

)
M

P
U

(O
h
ta

k
e

et
al

.
2

0
0

3
)

W
av

el
et

s
(M

an
so

n
et

al
.

2
0

0
8

)
S

P
(K

az
h

d
an

an
d

H
o

p
p

e
2

0
1

3
)

O
u

r
m

et
h

o
d

S
ta

n
fo

rd
B

u
n

n
y

R
M

S
8
.0

×
1

0
−

4
1
.0

×
1

0
−

3
1
.1

×
1

0
−

3
8
.0

×
1

0
−

4
6
.3

×
1

0
−

4

M
ax

..
..

..
..

4
.5

×
1

0
−

3

A
rm

ad
il

lo
R

M
S

3
.0

×
1

0
−

4
..

1
.2

×
1

0
−

3
4
.0

×
1

0
−

4
1
.3

×
1

0
−

3

M
ax

9
.0

×
1

0
−

4
1
.9

×
1

0
−

3
2
.0

×
1

0
−

3
8
.0

×
1

0
−

4
7
.6

×
1

0
−

3

D
ra

g
o

n
R

M
S

3
.5

×
1

0
−

4
8
.0

×
1

0
−

4
1
.4

×
1

0
−

3
5
.1

×
1

0
−

4
1
.4

×
1

0
−

3

M
ax

..
4
.8

×
1

0
−

3
..

5
.1

×
1

0
−

3
1
.0

×
1

0
−

2

123



Scalable enforcement of geometric non-interference…

T
a
b
le
4

R
el

at
iv

e
o

n
-s

u
rf

ac
e

er
ro

r
o

f
o

u
r

m
et

h
o

d
o

n
v
ar

io
u

s
co

m
p

o
n

en
ts

o
f

en
g

in
ee

ri
n

g
sy

st
em

s.
A

ll
g

eo
m

et
ri

es
w

er
e

sa
m

p
le

d
at

N
�

=
2

5
,
0

0
0

.
T

h
e

o
p

ti
m

iz
at

io
n

w
ei

g
h

ts

λ
n

=
1

0
−

2
an

d
λ

r
=

5
×

1
0
−

4
w

er
e

u
se

d

F
u
se

la
g
e

L
u
g
g
ag

e
W

in
g

B
at

te
ry

p
ac

k
H

u
m

an
av

at
ar

R
el

at
iv

e
er

ro
r

R
M

S
7
.6

×
1

0
−

5
1
.8

×
1

0
−

4
2
.5

×
1

0
−

4
4
.4

×
1

0
−

4
7
.8

×
1

0
−

4

M
ax

5
.7

×
1

0
−

4
1
.8

×
1

0
−

3
1
.0

×
1

0
−

3
1
.8

×
1

0
−

3
3
.8

×
1

0
−

3

A
b
so

lu
te

er
ro

r
R

M
S

0
.2

4
cm

0
.0

1
cm

1
.2

8
cm

0
.6

6
cm

0
.1

4
cm

M
ax

1
.7

8
cm

0
.1

5
cm

5
.2

9
cm

2
.6

1
cm

0
.6

7
cm

D
is

cr
et

iz
at

io
n

4
7

×
2

9
×

2
9

3
3

×
4

4
×

2
8

2
9

×
4

7
×

2
9

2
9

×
4

7
×

2
9

3
7

×
3

2
×

3
4

F
it

ti
n
g

ti
m

e
(s

ec
o
n
d
s)

6
.7

1
3
.5

3
9
.4

1
5
.6

2
1
.3

123



R. C. Dunn et al.

Fig. 9 Components necessary for spatial integration in aircraft design optimization. A cross section view

is shown for an aircraft fuselage, wing, battery pack, human avatar, and luggage

dimension, yet do not result in an increase of relative error compared to other geome-

tries. Geometries with longer minimum bounding box diagonals will result in larger

absolute errors.

4.5 Application tomedical robot design optimization

We now apply our method for enforcing geometric non-interference constraints to

a medical robot design problem involving concentric tube robots (CTRs). CTRs are

composed of two or more long and slender pre-curved tubes made of superelastic

materials. They can be designed to reach points in a large region of interest by rotating

and translating the tubes relative to each other at their bases. These characteristics

make them ideal for minimally invasive surgeries where a surgeon can operate on a

small region of interest with high dexterity through actuation at the base.

In the foundational works of Sears and Dupont (2006) and Webster et al. (2006),

expressions for the shape and tip position of the CTR are derived with respect to the

robot’s geometric and control variables. Bergeles et al. (2015) use these expressions to

perform gradient-free optimization of the CTR’s geometric and control variables with

anatomical constraints. These anatomical constraints, i.e., geometric non-interference

constraints, enforce that the CTR does not interfere with the anatomy (e.g., the right

ventricle of the heart shown in Fig. 10) during operation. Recent work by Lin et al.

(2022) shows that gradient-based optimization enables an efficient and scalable solu-

tion to simultaneously optimize the large set of the tube’s geometric and control

variables while enforcing anatomical constraints. The experiment we now present

follows the workflow of (Lin et al. 2022), however, using our new formulation for

representing the anatomical constraint function.

The presented workflow involves the solution of multiple optimization problems,

including an initial path planning problem, and the geometric design and control of the

CTR (the ‘simultaneous optimization problem’ described by Lin et al. (2022)). The

path planning problem solves for a parametric 3D curve that represents an optimal

collision-free path to the surgical site within the anatomy. Then, points along this path
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Fig. 10 Preprocessing the raw scanned data (left) to a smooth approximate model (right)

Table 5 Accuracy of our method in representing a smoothed heart model. Minimum bounding box diagonal

is 244.75 mm. The anatomy is sampled at N� = 100, 000, and our method uses a control point discretization

of (28 × 23 × 37), λn = 10−2, and λr = 10−4

Relative error Absolute error

On-surface RMS 2.1 × 10−4 0.053 mm

Max 1.8 × 10−3 0.432 mm

5 mm Off-surface RMS 3.1 × 10−3 0.758 mm

Max 4.3 × 10−3 1.058 mm

serve as inputs to the geometric design and control optimization of the CTR, which

involve a kinematic model of the robot. In both subproblems, the non-interference

constraints are enforced by evaluating a discrete set of points along the path or physical

CTR to ensure that no points lie outside of the anatomy.

We begin our experiment with an investigation in the heart anatomy which repre-

sents the non-interference constraint of the problem. The initial oriented point cloud

of the heart is obtained from segmentation and 3D reconstruction by magnetic reso-

nance imaging (MRI) scans. Due to the limited machine accuracy, error introduced

by aligning multiple scans, and normal approximation, the oriented point cloud is

noisy, nonuniform, and contains poorly oriented normals. We perform a simple and

necessary smoothing step on this point cloud as illustrated in Fig. 10. Although less

precise at capturing small scale features, the smoothing step assists our method in

reconstructing a smooth zero contour for constraint representation.

The smooth representation has relative errors 3.1 × 10−3 (RMS) and 1.9 × 10−2

(max) compared to the original noisy representation. The error in our energy mini-

mized function obtained from the smoothed heart model is tabulated in Table 5. We

observe that the on-surface RMS and max error of our representation is an order of

magnitude less than the error introduced by the smoothing step. This implies that our

representation of the smooth model is no worse than the smoothing step itself. We

see that our method generates a function with a reliable zero level set of the smooth

heart geometry, with an on-surface RMS error of 2.1×10−4. This error is lower com-

pared to all the other examples in Table 3, and we attribute this to the smoothness of

the heart geometry. We also note that the max on- and off-surface absolute errors of
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Table 6 Constraint function evaluations and optimization time for the concentric tube robot’s path planning

and design optimization. The anatomy is represented using N� = 1, 842

Subproblem Lin et al. (2022) Our method

Path planning Design Path planning Design

Function evaluations 37 35,142 62 20,793

Optimization time 4.2 sec 3 hr 11 min 0.9 sec 1 hr 24 min

Fitting time N/A 8.7 sec

our representation are of the same order as the diameter of the CTR itself, typically

0.5−2.0 mm.

We now solve the two optimization subproblems using our energy minimized LSF

of the smoothed heart model to enforce the geometric non-interference constraint. In

the model from Lin et al. (2022), the non-interference constraint was imposed using

a penalization function g(x), where it was defined as negative for the feasible region,

and positive for the infeasible region. In our implementation, we represent this func-

tion with our energy minimized LSF in the form g(x) = −φ(x). The results from

this experiment are shown in Table 6, where the number of function evaluations and

optimization time are tabulated for each subproblem and non-interference constraint

method. The time to solve the energy minimization problem for our method is denoted

as the fitting time. Between the two subproblems, the number of function evaluations

and optimization time is significantly more for the design subproblem due to the inclu-

sion of the kinematics models. Between the two non-interference constraint methods,

we observe a significant decrease in optimization time by using our new method for

both subproblems. Even when accounting for the fitting time, our method provides

a significant speedup for the design subproblem. However, we note that the speedup

provided by our method for computationally inexpensive optimization problems, such

as the path planning subproblem, may be negated by the fitting time to solve for the

energy minimized LSF. For geometries with larger N� and more complex optimization

problems requiring more function evaluations, we expect the speedup in optimization

time to be more pronounced.

5 Conclusion

In this paper, we presented a new method for modeling interference between geomet-

ric shapes in gradient-based optimization. In Sec. 1, we consolidated the terminology

used in prior literature and call this category of constraints ‘geometric non-interference

constraints’. Additionally, we framed the set of optimization problems with geometric

non-interference constraints into three groups: layout optimization, shape optimiza-

tion, and optimal path planning problems. Section 2 reviewed the existing geometric

non-interference constraint formulations in gradient-based optimization and contex-

tualized our formulation within the field of surface reconstruction. Section 3 presented

our new constraint formulation, which approximates the signed distance function using

B-splines computed by solving an energy minimization problem. Section 4 presented
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accuracy and scaling studies with our formulation. We also solved a path planning and

shape optimization problem using our new formulation.

The contribution of this paper is a new formulation for representing geometric non-

interference constraints in gradient-based optimization. This formulation involves a

scalable, smooth, and fast-to-evaluate constraint function that approximates the local

signed distance to a geometric shape. The use of B-spline functions is key to our for-

mulation being scalable, smooth, and fast-to-evaluate. We showed that our formulation

achieves a level of accuracy on the same order of magnitude as surface reconstruction

methods used in computer graphics. Additionally, our formulation yields better accu-

racy, up to a certain limit, and scales better in evaluation time with respect to the number

of points sampled on the geometric shape N� compared to previous non-interference

constraint formulations used by the optimization community. The fitting time for our

formulation is on the order of seconds and scales with the number of B-spline control

points. To accurately represent small-scale features under our new formulation, we

must perform uniform refinement of the B-spline control points, which will increase

the number of control points and, consequently, the fitting time required to achieve the

level of accuracy desired. Evaluation times are on the order of 10−6 seconds per point

as measured on a modern desktop workstation, entirely independent of the number of

sample points N� . The method results in a 78% and 56% speedup in optimization time

for a path planning and design subproblem, respectively, for an existing concentric

tube robot (CTR) gradient-based design optimization problem.

We identify multiple directions for future work. Adaptive octrees with B-splines can

represent small-scale features such as edges and sharp corners more accurately. Using

octrees for discretization instead of using a uniform grid can clearly yield faster and

more accurate solutions in problems where any of the modeled geometries remain con-

stant during optimization iterations, e.g., the CTR or wind farm layout optimization

problems. However, it is worth restating that when geometries evolve during opti-

mization, rediscretizing surfaces using octrees in each optimization iteration becomes

unreasonably expensive, and we only recommend a uniform discretization in such

cases. Even when using a uniform discretization, the computational cost to compute

the total derivatives of the constraints with respect to the changing geometries with

our new formulation may still be impractical for such an optimization problem. In

its current state, our formulation is relatively well-suited for a fixed-boundary with

detailed geometric features that require a fine discretization (N� large), because exist-

ing explicit formulations have evaluation times that increase with the number of points.

However, for geometries that can be represented with coarse meshes, we expect the

evaluation times of our formulation and explicit formulations to be comparable. Accel-

eration with multi-threading or graphics processing units (GPUs) is another possible

direction for future research.
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